GNU Compiler Collection Internals

For ccc version 10.3.1

(GNU Arm Embedded Toolchain 10.3-2021.10)

Richard M. Stallman and the GCC Developer Community




Copyright (©) 1988-2020 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later version published by the
Free Software Foundation; with the Invariant Sections being “Funding Free Software”, the
Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see
below). A copy of the license is included in the section entitled “GNU Free Documentation
License”.

(a) The FSF’s Front-Cover Text is:
A GNU Manual
(b) The FSF’s Back-Cover Text is:

You have freedom to copy and modify this GNU Manual, like GNU software. Copies
published by the Free Software Foundation raise funds for GNU development.



Short Contents

Introduction . . ..o e 1
1 Contributing to GCC Development . ...................... 3
2 GCC and Portability ........ ... i 5
3 Interfacing to GCC Output . . ... .. 7
4 The GCC low-level runtime library ....................... 9
5 Language Front Ends in GCC .......................... 59
6  Source Tree Structure and Build System.................. 61
T Testsuites ..o e 79
8  Option specification files. ......... ... ... ... ... 119
9  Passes and Files of the Compiler....................... 127
10 Sizes and offsets as runtime invariants. .................. 147
11 GENERIC. ... e 161
12 GIMPLE . ..o 209
13 Analysis and Optimization of GIMPLE tuples............ 247
14 RTL Representation ............ ... .. ... 259
15 Control Flow Graph . ...... ... .. .. 317
16 Analysis and Representation of Loops................... 327
17  Machine Descriptions . .. ...t 337
18 Target Description Macros and Functions................ 479
19 Host Configuration ... ........ ... ... 663
20 Makefile Fragments. ... ...... ... i 667
21 collect. . ittt 671
22 Standard Header File Directories....................... 673
23  Memory Management and Type Information ............. 675
24 Plugins. ... ..o 685
25 Link Time Optimization.......... ... ... ... . ... ... 693
26 Match and Simplify .. ... ... 701
27 Static Analyzer....... ... ... 707
28 User Experience Guidelines . .......................... 715
Funding Free Software . . ....... ... .. . . i i 723
The GNU Project and GNU/Linux. ........... .. ... ... 725
GNU General Public License. .. ....... ..., 727
GNU Free Documentation License . ........................ 739
Contributors to GCC . ... .. e 747

Option Index . . ... 765



ii GNU Compiler Collection (GCC) Internals

Concept Index .. ... e 767



Table of Contents

Introduction ............. .. ... 1
1 Contributing to GCC Development ........... 3
2 GCC and Portability ........................... 5
3 Interfacing to GCC Output.................... 7
4 The GCC low-level runtime library ........... 9
4.1 Routines for integer arithmetic.............. .. ... ... .. 9
4.1.1 Arithmetic functions .......... .. ..o 9

4.1.2 Comparison functions ..., 10

4.1.3 Trapping arithmetic functions ................. ... .. ..... 11

4.1.4 Bit operations. .......oouuuiiii 11

4.2 Routines for floating point emulation....................... ... 12
4.2.1 Arithmetic functions ........... ... i 12

4.2.2  Conversion functions .......... ..., 13

4.2.3 Comparison functions ..., 15

4.2.4 Other floating-point functions ............................ 16

4.3 Routines for decimal floating point emulation.................. 16
4.3.1 Arithmetic functions ........... ... i 17

4.3.2 Conversion functions .......... ..., 17

4.3.3 Comparison functions ..., 20

4.4 Routines for fixed-point fractional emulation................ ... 22
4.4.1 Arithmetic functions ........... ... .. i 22

4.4.2 Comparison functions .............cooviiiieiiiieennnn... 30

4.4.3 Conversion functions .......... ..., 30

4.5 Language-independent routines for exception handling......... 56
4.6 Miscellaneous runtime library routines......................... 57
4.6.1 Cache control functions............. ... ... i L. 57

4.6.2 Split stack functions and variables........................ 57

5 Language Front Ends in GCC................ 59
6 Source Tree Structure and Build System.... 61
6.1 Configure Terms and History............ .. ... ..., 61
6.2 Top Level Source Directory...........cooiiiiiiiiiiiiiiiii.. 61
6.3 The ‘gec’ Subdirectory ... 63
6.3.1 Subdirectories of ‘gcc’. ... 63

6.3.2 Configuration in the ‘gcc’ Directory ...................... 64

6.3.2.1 Scripts Used by ‘configure’......................... 64

iii



iv GNU Compiler Collection (GCC) Internals
6.3.2.2 The ‘config.build’; ‘config.host’; and ‘config.gcc’
Files ... o 65
6.3.2.3 Files Created by configure......................... 65
6.3.3 Build System in the ‘gcc’ Directory ...................... 66
6.3.4 Makefile Targets ... 66
6.3.5 Library Source Files and Headers under the ‘gcc’ Directory
............................................................ 68
6.3.6 Headers Installed by GCC.......... ... ... ..., 68
6.3.7 Building Documentation............. ... . ool 69
6.3.7.1 Texinfo Manuals............ ... ... o .o i 69
6.3.7.2 Man Page Generation ...............ccooiiieiinn.... 70
6.3.7.3 Miscellaneous Documentation........................ 71
6.3.8 Anatomy of a Language Front End ....................... 71
6.3.8.1 The Front End ‘language’ Directory................. 72
6.3.8.2 The Front End ‘config-lang.in’ File............... 73
6.3.8.3 The Front End ‘Make-lang.in’ File................. 74
6.3.9 Anatomy of a Target Back End........................... 75
7 Testsuites.......... ... . ... L. 79
7.1 Idioms Used in Testsuite Code ..., 79
7.2 Directives used within DejaGnu tests.......................... 80
7.2.1 Syntax and Descriptions of test directives................. 80
7.2.1.1 Specify how to build the test ........................ 80
7.2.1.2 Specify additional compiler options.................. 81
7.2.1.3 Modify the test timeout value ....................... 81
7.2.1.4 Skip a test for some targets.............. ... ... 81
7.2.1.5 Expect a test to fail for some targets................. 82
7.2.1.6 Expect the test executable to fail .................... 82
7.2.1.7 Verify compiler messages ...............ooiiiiii.. 82
7.2.1.8 Verify output of the test executable.................. 83
7.2.1.9 Specify environment variables for a test.............. 83
7.2.1.10 Specify additional files for a test.................... 84
7.2.1.11 Add checks at the end of a test..................... 84
7.2.2 Selecting targets to which a test applies .................. 84
7.2.3 Keywords describing target attributes .................... 84
7.2.3.1 Endianness.............oiiiiiiiiiiiiii i 85
7.2.3.2 Datatypesizes.......oooiiiiiiiiiiiiiiiii 85
7.2.3.3 Fortran-specific attributes........................... 86
7.2.3.4 Vector-specific attributes ............................ 86
7.2.3.5 Thread Local Storage attributes..................... 90
7.2.3.6 Decimal floating point attributes..................... 91
7.2.3.7 ARM-specific attributes ............................. 91
7.2.3.8 AArch64-specific attributes........... ... .. ... L 95
7.2.3.9 MIPS-specific attributes............................. 96
7.2.3.10 PowerPC-specific attributes ........................ 97
7.2.3.11 Other hardware attributes.......................... 98
7.2.3.12 Environment attributes.............. ... ... ... 99

7.2.3.13 Other attributes ..., 101



7.2.3.14 Local to tests in gcc.target/i386................ 103

7.2.3.15 Local to tests in gcc.test-framework............. 104

7.2.4 Features for dg-add-options............................ 104
7.2.5 Variants of dg-require-support........................ 105
7.2.6 Commands for use in dg-final ......................... 107
7.2.6.1 Scan a particular file................. ... ... ... 107
7.2.6.2 Scan the assembly output ............... ... ... ... 107
7.2.6.3 Scan optimization dump files.................... ... 109
7.2.6.4 Check for output files ............ ... ...l 109
7.2.6.5 Checks for gcov tests.......... ... ...t 109
7.2.6.6 Clean up generated test files........................ 110

7.3 Ada Language Testsuites..............ooooiiiiiiiiiiiiin. 111
7.4 C Language Testsuites . ..., 111
7.5 Support for testing link-time optimizations................... 113
7.6 Support for testing gcov..... ... 113
7.7 Support for testing profile-directed optimizations............. 114
7.8 Support for testing binary compatibility...................... 115
7.9 Support for torture testing using multiple options ............ 116
7.10 Support for testing GIMPLE passes......................... 117
7.11 Support for testing RTL passes ...........ccvviiiiiii... 118
Option specification files..................... 119
8.1 Option file format......... ... .. 119
8.2 Option Properties . . ........ee it 121
Passes and Files of the Compiler ........... 127
9.1 ParSing Pass . .....vuttttt ettt e 127
9.2 Gimplification pass....... ..o 128
9.3 Pass mManager........oouuuitiii 128
9.4 Inter-procedural optimization passes.......................... 129
9.4.1 Small TPA passes......ovuiiiiii i 129
9.4.2 Regular TPA passes........cooiiiiiiiiiiiiiiinn.. 130
9.4.3 Late IPA passes ... ..ottt 132
0.5 Tree SSA PasSes . ...ttt 132
9.6 RIL PaSSES « oottt 139
9.7 Optimization info......... ... 143
9.7.1 Dump setup ....ovviiiiii e 143
9.7.2  Optimization groups . .......c.veeeiirireenie e 143
9.7.3 Dump files and streams ............... ..o 143
9.7.4 Dump output verbosity .............. 144
9.7.5 DUmMP Gy PeS. e 144

9.7.6 Dump examples....... ..o 145



vi GNU Compiler Collection (GCC) Internals

10 Sizes and offsets as runtime invariants.... 147

10.1 Overview of poly_int .........ooiiuiiiiiiiiiiiiiinanenn 147
10.2  Consequences of using poly_int ..............cooviieen... 148
10.3 Comparisons involving poly_int............... ... ......... 149
10.3.1 Comparison functions for poly_int .................... 149
10.3.2 Properties of the poly_int comparisons................ 150
10.3.3 Comparing potentially-unordered poly_ints............ 150
10.3.4 Comparing ordered poly_ints...............c...ouet.. 151
10.3.5 Checking for a poly_int marker value ................. 151
10.3.6 Range checks on poly_ints............... ..., 152
10.3.7  Sorting poLly_ints .......coueiiuiiiiiiniii .. 153
10.4  Arithmetic on poly_ints ...........ooiiiiiiiiiiiiiiienno... 153
10.4.1 Using poly_int with C+4+ arithmetic operators........ 153
10.4.2 wi arithmetic on poly_ints......... ... ..., 154
10.4.3 Division of poly_ints.........c.coiiiiiiiiiiiiii .. 154
10.4.4 Other poly_int arithmetic............. ... ... ... ..... 155
10.5 Alignment of poly_ints .......coviuiiiiiiiiiiiieannn.. 155
10.6 Computing bounds on poly_ints ............ccovieveinnn... 157
10.7 Converting poly_ints ........cuuvuiiiiiiie i, 157
10.8 Miscellaneous poly_int routines................. ... .. 159
10.9 Guidelines for using poly_int ...........ccoiiiiiiiiia.... 159
11 GENERIC.............. ... ... .......... 161
11.1 Deficiencies . . ..ot 161
11.2 0 OVEIVIEW ..ttt e e 161
T1.2.1  Trees « o oot e 162
11.2.2 Identifiers. ... ..o 163
11.2.3  Containers........ooiuuiiii e 163
S T I 0P 163
11.4 Declarations . ........c.oouuuiini e 168
11.4.1 Working with declarations ...................... ... ... 168
11.4.2 Internal structure........... ... ..., 170
11.4.2.1 Current structure hierarchy ....................... 170
11.4.2.2 Adding new DECL node types .................... 171

11.5  Attributes in trees . ....o.vv e 172
11.6  EXPressions. .. ...ttt 173
11.6.1 Constant exXpressions. . ..........eeeiieennieeennnn... 173
11.6.2 References to storage. ..., 175
11.6.3 Unary and Binary Expressions ......................... 177
11.6.4  VeCtOrs . ..ot e 184
11.7  Statements .. ...oon et e 186
11.7.1 Basic Statements............. . i 186
11.7.2  BloCKS ..o oot 188
11.7.3 Statement Sequences...............coiiiiiiiiiiiiii... 189
11.7.4 Empty Statements.............ccoiiiiiiiiiii.. 189
1175 JUMDS . o oottt 189
11.7.6  Cleanups. . .ottt e et 189

1177 OpenMP. ..o o 190



12

11.7.8 OpenACC .. ... 192
11.8 Functions. ... s 193
11.8.1 Function Basics.........oooiiiiiii 193
11.8.2 Function Properties................ooiiiiiiiii i 194
11.9 Language-dependent trees..............ooiiiiiiiiiiiean.. 195
11,10 Cand CH+ Trees .. ovve et 196
11.10.1  Types for CH4 .o 196
11.10.2  NaAMESPACES « . vt vttt ettt 198
11.10.3  Classes . vvv vttt 199
11.10.4 Functions for C+4 ... .o 201
11.10.5 Statements for CH+—+ ... ... 203
11.10.5.1 Statements..............ccoiiiiiiiiiiiii. 204
11.10.6  CH+4 EXPressions ... ....oouuueeentieeniieennea.n. 206
GIMPLE ............... ... 209
12.1 Tuple representation......... ...t 210
12.1.1 gimple (gSbase)........oviiuiiiii i 210
12.1.2 gimple_statement_with_ops.......................... 211
12.1.3 gimple_statement_with_memory_ops.................. 211
12.2  Class hierarchy of GIMPLE statements...................... 212
12.3 GIMPLE instruction set ........ ..o, 215
12.4  Exception Handling......... ... .. i, 215
12.5  TempPOraries . ... ov e 216
12.6 Operands. ... ...t 216
12.6.1 Compound Expressions .............cooiiiiiiiiiii.n. 217
12.6.2 Compound Lvalues.......... ..o i, 217
12.6.3 Conditional Expressions............oooeviiieeiiiiiinn. 217
12.6.4 Logical Operators...........coouiiiiiiiiiiiinienn.. 217
12.6.5 Manipulating operands................cooiiiiiiii 217
12.6.6 Operand vector allocation.............................. 218
12.6.7 Operand validation ............. ... oo L. 219
12.6.8 Statement validation............. ... i 219
12.7 Manipulating GIMPLE statements.......................... 220
12.7.1  ComImOn ACCESSOTS - . .« vttt et et e 220
12.8 Tuple specific acCessors . .......viiiiiiiii i 223
12.8.1 GIMPLE_ASM. ...ttt 223
12.8.2 GIMPLE_ASSIGN ...\ttt i 224
12.8.3 GIMPLE_BIND . ...ttt et e 225
12.8.4 GIMPLE_CALL ...ttt ee e 226
12.8.5 GIMPLE _CATCH . ...ttt ittt et 227
12.8.6  GIMPLE_COND .. uttttttttt ettt 228
12.8.7 GIMPLE_DEBUG ........iiititieie ittt et 229
12.8.8 GIMPLE_EH_FILTER...... ..ttt 230
12.8.9 GIMPLE _LABEL . ...ttt ittt 231
12.8.10 GIMPLE_GOTO ...ttt iie e 231
12.8.11  GIMPLE _NOP. ...ttt 231
12.8.12 GIMPLE_OMP_ATOMIC_LOAD ........coriiiiiiiieann.. 231

12.8.13 GIMPLE_OMP_ATOMIC_STORE..........cciviiiinnnnnnn.. 232

vii



viii

GNU Compiler Collection (GCC) Internals
12.8.14 GIMPLE_OMP_CONTINUE.........civiiiriieeiineennnnn.. 232
12.8.15 GIMPLE_OMP_CRITICAL .......cituiiiiieiieiaannnnn 233
12.8.16 GIMPLE_OMP_FOR......ciiiiitiiiie it iie e 233
12.8.17 GIMPLE_OMP_MASTER .......coiiiiiiiieeiiieeennn. 234
12.8.18 GIMPLE_OMP_ORDERED............ciiiiiiineenninnnnnnn. 235
12.8.19 GIMPLE_OMP_PARALLEL .........coiiiriiiiiiinnnnnnnn.. 235
12.8.20 GIMPLE_OMP_RETURN ..........cuniiiiiiiineinnnnnnn 236
12.8.21 GIMPLE_OMP_SECTION.......ittiiiiiineiinenaennnnn 236
12.8.22 GIMPLE_OMP_SECTIONS......oitiitiiieiieieeiinennnnn 236
12.8.23 GIMPLE_OMP_SINGLE ........c.iniiiiiiineniiineennnnn.. 237
12.8.24 GIMPLE _PHI. ...ttt 237
12.8.25 GIMPLE _RESX ... ittt et 238
12.8.26 GIMPLE_RETURN .........cuiiiriiieiiniieeinenennn. 238
12.8.27 GIMPLE_SWITCH.........0iiiiiiiiiiiiiiieeeenn., 238
12.8.28 GIMPLE _TRY. ...ttt e 239
12.8.29 GIMPLE_WITH_CLEANUP_EXPR..............ciiiinn.. 240
12.9 GIMPLE SEqUeNCeS . . ... utt et e 240
12.10  Sequence iterators ...........uuieiiit i 241
12.11 Adding a new GIMPLE statement code.................... 244
12.12 Statement and operand traversals.......................... 245

13 Analysis and Optimization of GIMPLE tuples

............................................... 247
13.1  Annotations .. .......oineti it 247
13.2 SSA Operands.........ooiiiiiiiiii e 247

13.2.1 Operand Iterators And Access Routines................ 249
13.2.2 Immediate Uses...... ..o 251
13.3 Static Single Assignment............... ... L. 252
13.3.1 Preserving the SSA form............. ... ... ... ... ... 253
13.3.2 Examining SSA_NAME nodes .............coviieeeenn... 255
13.3.3 Walking the dominator tree............................ 255
13.4 Alias analysis. ... 256
13.5 Memory model ... 257
14 RTL Representation........................ 259
14.1 RTL Object Types. ...ouuuiiiiiii e 259
14.2 RTL Classes and Formats............. ... ... ..., 260
14.3 Access to Operands........ ..ot 262
14.4  Access to Special Operands ..., 263
14.5 Flags in an RTL Expression.............cooooiiiiiiiiia.. 266
14.6  Machine Modes...... ... 271
14.7 Constant Expression Types ... ... 278
14.8 Registers and Memory ... 282
14.9 RTL Expressions for Arithmetic............................. 288
14.10 Comparison Operations.............ocoiiiiiiiiiiinn... 292
14.11 Bit-Fields . ... 294

14.12  Vector Operations . ..........ouueeiiiteiiiiieeiiiieeennn.. 294



1413 CONVEISIONS . .t vttt ettt et et e et eeiee s 295
14.14 Declarations. .........oouiiiiiin i 297
14.15 Side Effect Expressions ...........cooiiiiiii ... 297
14.16 Embedded Side-Effects on Addresses....................... 302
14.17 Assembler Instructions as Expressions...................... 303
14.18 Variable Location Debug Information in RTL .............. 304
1419 InSIS . oottt 304
14.20 RTL Representation of Function-Call Insns................. 313
14.21 Structure Sharing Assumptions ............................ 314
14.22 Reading RTL ... ... e 315
15 Control Flow Graph........................ 317
15.1 Basic Blocks. ... 317
152 Edges ..o 319
15.3 Profile information.............. ... . 322
15.4 Maintaining the CFG ... ... . ... o i i 323
15.5 Liveness information......... ... ... ... i 325

16 Analysis and Representation of Loops .... 327

16.1 Loop representation............ ..o, 327
16.2  LoOD qUETYING .« oo vttt e 329
16.3 Loop manipulation........... ... i 330
16.4 Loop-closed SSA form ..., 330
16.5  Scalar evolutions. ...ttt 331
16.6 IV analysison RTL....... ... i 332
16.7 Number of iterations analysis ................. ..., 332
16.8 Data Dependency Analysis............ccooiiiiiiiiiiia.. 334
17 Machine Descriptions....................... 337
17.1 Overview of How the Machine Description is Used........... 337
17.2  Everything about Instruction Patterns ...................... 337
17.3 Example of define_insn ..., 339
17.4 RTL Template . ... ..o 339
17.5 Output Templates and Operand Substitution................ 343
17.6 C Statements for Assembler Output......................... 344
17.7 Predicates . ... ..o e 346
17.7.1 Machine-Independent Predicates ....................... 346
17.7.2 Defining Machine-Specific Predicates ................... 348
17.8 Operand Constraints.............cooiiiiiiiiiiiiiiniieann. 350
17.8.1 Simple Constraints. ..........ooriieiiiieennieeennnn.. 350
17.8.2 Multiple Alternative Constraints ....................... 355
17.8.3 Register Class Preferences.................... ... . ..., 356
17.8.4 Constraint Modifier Characters......................... 356
17.8.5 Constraints for Particular Machines .................... 357
17.8.6 Disable insn alternatives using the enabled attribute... 387
17.8.7 Defining Machine-Specific Constraints.................. 388

17.8.8 Testing constraints from C............................. 391

ix



GNU Compiler Collection (GCC) Internals

17.9 Standard Pattern Names For Generation.................... 392
17.10 When the Order of Patterns Matters....................... 432
17.11 Interdependence of Patterns ............................... 433
17.12 Defining Jump Instruction Patterns........................ 433
17.13 Defining Looping Instruction Patterns................... ... 434
17.14 Canonicalization of Instructions.............. ... ... ..... 436
17.15 Defining RTL Sequences for Code Generation .............. 438
17.16 Defining How to Split Instructions ......................... 440
17.17 Including Patterns in Machine Descriptions................. 446
17.17.1 RTL Generation Tool Options for Directory Search.... 446
17.18 Machine-Specific Peephole Optimizers...................... 446
17.18.1 RTL to Text Peephole Optimizers..................... 447
17.18.2 RTL to RTL Peephole Optimizers..................... 449
17.19 Instruction Attributes ......... ... ... i 450
17.19.1 Defining Attributes and their Values .................. 451
17.19.2  Attribute Expressions...........cooviiiiiiiiiiiii... 452
17.19.3 Assigning Attribute Values to Insns ................... 455
17.19.4 Example of Attribute Specifications................... 456
17.19.5 Computing the Length of an Insn..................... 457
17.19.6 Constant Attributes .......... ... ... .o ... 458
17.19.7 Mnemonic Attribute ............... ... ... L 459
17.19.8 Delay Slot Scheduling............... ... .. . ... 459
17.19.9 Specifying processor pipeline description .............. 460
17.20 Conditional Execution................oooiiiiiiiiiiiiL. 466
17.21 RTL Templates Transformations........................... 467
17.21.1 define_subst Example............................... 468
17.21.2 Pattern Matching in define_subst ................... 469
17.21.3 Generation of output template in define_subst....... 469
17.22  Constant Definitions.......... ... ... i, 470
1723 TEerators. ... ..o.uueiii e 472
17.23.1 Mode Iterators........cooviieeiiii i, 472
17.23.1.1 Defining Mode Iterators.............. ... ... .... 472
17.23.1.2 Substitution in Mode Iterators ................... 473
17.23.1.3 Mode Iterator Examples ......................... 473
17.23.2 Code Tterators...... ..o 474
17.23.3 Int Iterators............ccoiiiiiii i 475
17.23.4 Subst Iterators.............coiiiiiiiiiiiiiii. .. 476
17.23.5 Parameterized Names................ccooiiiiiene.... 477

18 Target Description Macros and Functions

............................................... 479
18.1 The Global targetm Variable ............ ... ... ... ... .. 479
18.2 Controlling the Compilation Driver, ‘gec’ ................... 480
18.3 Run-time Target Specification............... ... ... 486
18.4 Defining data structures for per-function information. ....... 489
18.5 Storage Layout ...... ..ot 490
18.6 Layout of Source Language Data Types..................... 500

18.7 Register Usage......ovinniiiii e 505



18.7.1 Basic Characteristics of Registers.......................
18.7.2  Order of Allocation of Registers..................... ...
18.7.3 How Values Fit in Registers................. ... ...,
18.7.4 Handling Leaf Functions ............... .. ... . ...,
18.7.5 Registers That Form a Stack...........................
18.8 Register Classes .. ...vviirtt i
18.9 Stack Layout and Calling Conventions ......................
18.9.1 Basic Stack Layout........... ...
18.9.2 Exception Handling Support ............ ... ..
18.9.3 Specifying How Stack Checking is Done ................
18.9.4 Registers That Address the Stack Frame ...............
18.9.5 Eliminating Frame Pointer and Arg Pointer ............
18.9.6 Passing Function Arguments on the Stack..............
18.9.7 Passing Arguments in Registers ........................
18.9.8 How Scalar Function Values Are Returned..............
18.9.9 How Large Values Are Returned .......................
18.9.10 Caller-Saves Register Allocation.......................
18.9.11 Function Entry and Exit........... ... oL
18.9.12 Generating Code for Profiling.........................
18.9.13 Permitting tail calls......... ... ... it
18.9.14 Shrink-wrapping separate components.................
18.9.15 Stack smashing protection ......... ... ... ... ... L
18.9.16 Miscellaneous register hooks ................ ... ... ...

18.10
18.11
18.12
18.13
18.14
18.15

Implementing the Varargs Macros..........................
Support for Nested Functions..............................
Implicit Calls to Library Routines..........................
Addressing Modes . ......vviiiii e
Anchored Addresses ..ot
Condition Code Status. ........ccoovviiiiiiiiiiiiiiea.. ..

18.15.1 Representation of condition codes using (cc0).........
18.15.2 Representation of condition codes using registers . ... ..

18.16
18.17
18.18
18.19
18.20

Describing Relative Costs of Operations....................
Adjusting the Instruction Scheduler........................
Dividing the Output into Sections (Texts, Data, ...).......
Position Independent Code ...,
Defining the Output Assembler Language ..................

18.20.1 The Overall Framework of an Assembler File..........
18.20.2 Output of Data ...
18.20.3 Output of Uninitialized Variables .....................
18.20.4 Output and Generation of Labels .....................
18.20.5 How Initialization Functions Are Handled .............
18.20.6 Macros Controlling Initialization Routines.............
18.20.7 Output of Assembler Instructions .....................
18.20.8 Output of Dispatch Tables................. ... ...
18.20.9 Assembler Commands for Exception Regions..........
18.20.10 Assembler Commands for Alignment.................

18.21

Controlling Debugging Information Format.................

18.21.1 Macros Affecting All Debugging Formats..............

xi



xii GNU Compiler Collection (GCC) Internals

18.21.2  Specific Options for DBX Output ..................... 626
18.21.3 Open-Ended Hooks for DBX Format.................. 628
18.21.4 File Names in DBX Format........................... 628
18.21.5 Macros for DWARF Output........................... 629
18.21.6 Macros for VMS Debug Format ....................... 631

18.22 Cross Compilation and Floating Point...................... 631
18.23 Mode Switching Instructions........... ... ... .. 632
18.24 Defining target-specific uses of __attribute__............. 633
18.25 Emulating TLS ... .. 636
18.26 Defining coprocessor specifics for MIPS targets. ............ 637
18.27 Parameters for Precompiled Header Validity Checking. .. ... 638
18.28 CH-+ ABI parameters...........o.eiiiiiiiiiiieiia.n. 638
18.29 D ABI parameters..........oouuiuuiiiiiiiiiiiiaiaiean. 640
18.30 Adding support for named address spaces.................. 640
18.31 Miscellaneous Parameters............ .. ...t 642
19 Host Configuration ......................... 663
19.1 Host COmmOn . . ..ottt e e 663
19.2 Host Filesystem. ... 664
19.3 HOSt MiSC . vttt 665
20 Makefile Fragments......................... 667
20.1 Target Makefile Fragments............... ...t 667
20.2 Host Makefile Fragments........... ... ... ..ot 670
21 collect2 .. 671
22 Standard Header File Directories.......... 673

............................................... 675
23.1 The Inside of & GTY(()) . ovvririii e 676
23.2  Support for inheritance .......... ... ... i 680
23.3 Support for user-provided GC marking routines ............. 680

23.3.1 User-provided marking routines for template types...... 681
23.4 Marking Roots for the Garbage Collector.................... 682
23.5 Source Files Containing Type Information................... 682
23.6 How to invoke the garbage collector......................... 683

23.7 Troubleshooting the garbage collector....................... 684



24 Plugins........... .. . 685
24.1 Loading Plugins ....... ... .o i 685
24.2 Plugin APL. ... .. 685

24.2.1 Plugin license check......... ... ... o il 685

24.2.2  Plugin initialization.............. . ... o oL 686

24.2.3 Plugin callbacks.............o i 687
24.3 Interacting with the pass manager........................... 688
24.4 Interacting with the GCC Garbage Collector ................ 689
24.5 Giving information about a plugin ............... ... ... ... 689
24.6 Registering custom attributes or pragmas ................... 689
24.7 Recording information about pass execution................. 690
24.8 Controlling which passes are being run...................... 691
24.9 Keeping track of available passes................ ... . ... 691
24.10 Building GCC plugins ........oooiiiiiiii i, 691

25 Link Time Optimization.................... 693

25.1 Design OVErview. .. ......oueiitiinii it 693

25.1.1 LTO modes of operation ..............cooviiiieeaa... 694
25.2 LTO file sections. ......ouuuuiiii e 694
25.3 Using summary information in IPA passes................... 696
25.3.1 Virtual clones......... ..o 697
25.3.2 TPA references ..........ouueiiiiiiiiiii i, 698
25.3.3 Jump functions ........ ... .. 698
25.4 Whole program assumptions, linker plugin and symbol visibilities
.............................................................. 698

25.5 Internal flags controlling 1tol........... .. .. ..., 700

26 Match and Simplify......................... 701
26.1 GIMPLE API ... . 701
26.2 The Language ........oueiiiii e 702

27 Static Analyzer ... 707
27.1 Analyzer Internals . ........ ... . 707

27. 1.1 OVEIVIEW .ottt e et e e 707
27.1.2 Graphs .. ..o 708
27.1.3 State Tracking ...........cooiiiiiiiiiii i, 708
27.1.4 Region Model...... ... 710
27.1.5 Analyzer Paths ....... ... ... . 711
27.1.6 Limitations ........ ... 712
27.2 Debugging the Analyzer ......... ... ... . il 712
27.2.1 Special Functions for Debugging the Analyzer.......... 712

27.2.2  Other Debugging Techniques........................... 713

xiii



xiv GNU Compiler Collection (GCC) Internals

28 User Experience Guidelines................ 715
28.1 Guidelines for Diagnostics..............o i, 715
28.1.1 Talk in terms of the user’scode ........................ 715
28.1.2 Diagnostics are actionable............ .. ... ... oL 715
28.1.3 The user’s attention is important....................... 715
28.1.4 Precision of Wording........... ... .ol 715
28.1.5 Try the diagnostic on real-world code................... 716
28.1.6 Make mismatches clear............... ..., 716
28.1.7 Location Information .................... ... oL, 717
28.1.8 Coding Conventions. .........c...ouitieiieinieeneenn.. 718
28.1.9 Group logically-related diagnostics ..................... 719
28.1.10  QUOLINE -+ v eee e e e 719
28.1.11 Spelling and Terminology .............c..oooiiiiia... 719
28.1.12 Fix-it hints ..ot 719
28.1.12.1 Fix-it hints should work.......................... 720
28.1.12.2 Express deletion in terms of deletion, not replacement
........................................................ 720
28.1.12.3 Multiple suggestions ..............coviiiiiia... 721
28.2 Guidelines for Options . ........coiuiiiiii i 721
Funding Free Software........................... 723
The GNU Project and GNU/Linux............ 725
GNU General Public License ................... 727
GNU Free Documentation License ............. 739
ADDENDUM: How to use this License for your documents ........ 746
Contributors to GCC............................ 747
Option Index . ... 765

Concept Index.................. ... ... ... .. ...... 767



Introduction 1

Introduction

This manual documents the internals of the GNU compilers, including how to port them
to new targets and some information about how to write front ends for new languages.
It corresponds to the compilers (GNU Arm Embedded Toolchain 10.3-2021.10) version
10.3.1. The use of the GNU compilers is documented in a separate manual. See Section
“Introduction” in Using the GNU Compiler Collection (GCC).

This manual is mainly a reference manual rather than a tutorial. It discusses how to con-
tribute to GCC (see Chapter 1 [Contributing|, page 3), the characteristics of the machines
supported by GCC as hosts and targets (see Chapter 2 [Portability], page 5), how GCC
relates to the ABIs on such systems (see Chapter 3 [Interface], page 7), and the character-
istics of the languages for which GCC front ends are written (see Chapter 5 [Languages],
page 59). It then describes the GCC source tree structure and build system, some of the
interfaces to GCC front ends, and how support for a target system is implemented in GCC.

Additional tutorial information is linked to from http://gcc.gnu.org/readings.html.


http://gcc.gnu.org/readings.html




Chapter 1: Contributing to GCC Development 3

1 Contributing to GCC Development

If you would like to help pretest GCC releases to assure they work well, current development
sources are available via Git (see http://gcc.gnu.org/git.html). Source and binary
snapshots are also available for F'TP; see http://gcc.gnu.org/snapshots.html.

If you would like to work on improvements to GCC, please read the advice at these URLs:

http://gcc.gnu.org/contribute.html
http://gcc.gnu.org/contributewhy.html

for information on how to make useful contributions and avoid duplication of effort. Sug-
gested projects are listed at http://gcc.gnu.org/projects/.


http://gcc.gnu.org/git.html
http://gcc.gnu.org/snapshots.html
http://gcc.gnu.org/contribute.html
http://gcc.gnu.org/contributewhy.html
http://gcc.gnu.org/projects/




Chapter 2: GCC and Portability 5

2 GCC and Portability

GCC itself aims to be portable to any machine where int is at least a 32-bit type. It aims
to target machines with a flat (non-segmented) byte addressed data address space (the code
address space can be separate). Target ABIs may have 8, 16, 32 or 64-bit int type. char
can be wider than 8 bits.

GCC gets most of the information about the target machine from a machine description
which gives an algebraic formula for each of the machine’s instructions. This is a very clean
way to describe the target. But when the compiler needs information that is difficult to
express in this fashion, ad-hoc parameters have been defined for machine descriptions. The
purpose of portability is to reduce the total work needed on the compiler; it was not of
interest for its own sake.

GCC does not contain machine dependent code, but it does contain code that depends on
machine parameters such as endianness (whether the most significant byte has the highest
or lowest address of the bytes in a word) and the availability of autoincrement addressing. In
the RTL-generation pass, it is often necessary to have multiple strategies for generating code
for a particular kind of syntax tree, strategies that are usable for different combinations of
parameters. Often, not all possible cases have been addressed, but only the common ones or
only the ones that have been encountered. As a result, a new target may require additional
strategies. You will know if this happens because the compiler will call abort. Fortunately,
the new strategies can be added in a machine-independent fashion, and will affect only the
target machines that need them.






Chapter 3: Interfacing to GCC Output 7

3 Interfacing to GCC Output

GCC is normally configured to use the same function calling convention normally in use
on the target system. This is done with the machine-description macros described (see
Chapter 18 [Target Macros], page 479).

However, returning of structure and union values is done differently on some target ma-
chines. As a result, functions compiled with PCC returning such types cannot be called
from code compiled with GCC, and vice versa. This does not cause trouble often because
few Unix library routines return structures or unions.

GCC code returns structures and unions that are 1, 2, 4 or 8 bytes long in the same
registers used for int or double return values. (GCC typically allocates variables of such
types in registers also.) Structures and unions of other sizes are returned by storing them
into an address passed by the caller (usually in a register). The target hook TARGET _STRUCT_
VALUE_RTX tells GCC where to pass this address.

By contrast, PCC on most target machines returns structures and unions of any size
by copying the data into an area of static storage, and then returning the address of that
storage as if it were a pointer value. The caller must copy the data from that memory area
to the place where the value is wanted. This is slower than the method used by GCC, and
fails to be reentrant.

On some target machines, such as RISC machines and the 80386, the standard system
convention is to pass to the subroutine the address of where to return the value. On these
machines, GCC has been configured to be compatible with the standard compiler, when
this method is used. It may not be compatible for structures of 1, 2, 4 or 8 bytes.

GCC uses the system’s standard convention for passing arguments. On some machines,
the first few arguments are passed in registers; in others, all are passed on the stack. It
would be possible to use registers for argument passing on any machine, and this would
probably result in a significant speedup. But the result would be complete incompatibility
with code that follows the standard convention. So this change is practical only if you
are switching to GCC as the sole C compiler for the system. We may implement register
argument passing on certain machines once we have a complete GNU system so that we
can compile the libraries with GCC.

On some machines (particularly the SPARC), certain types of arguments are passed “by
invisible reference”. This means that the value is stored in memory, and the address of the
memory location is passed to the subroutine.

If you use longjmp, beware of automatic variables. ISO C says that automatic variables
that are not declared volatile have undefined values after a longjmp. And this is all GCC
promises to do, because it is very difficult to restore register variables correctly, and one of
GCC’s features is that it can put variables in registers without your asking it to.






Chapter 4: The GCC low-level runtime library 9

4 The GCC low-level runtime library

GCC provides a low-level runtime library, ‘libgcc.a’ or ‘libgcc_s.so.1’ on some plat-
forms. GCC generates calls to routines in this library automatically, whenever it needs to
perform some operation that is too complicated to emit inline code for.

Most of the routines in libgcc handle arithmetic operations that the target processor
cannot perform directly. This includes integer multiply and divide on some machines, and all
floating-point and fixed-point operations on other machines. 1ibgcc also includes routines
for exception handling, and a handful of miscellaneous operations.

Some of these routines can be defined in mostly machine-independent C. Others must be
hand-written in assembly language for each processor that needs them.

GCC will also generate calls to C library routines, such as memcpy and memset, in some
cases. The set of routines that GCC may possibly use is documented in Section “Other
Builtins” in Using the GNU Compiler Collection (GCC).

These routines take arguments and return values of a specific machine mode, not a specific
C type. See Section 14.6 [Machine Modes], page 271, for an explanation of this concept. For
illustrative purposes, in this chapter the floating point type float is assumed to correspond
to SFmode; double to DFmode; and long double to both TFmode and XFmode. Similarly,
the integer types int and unsigned int correspond to SImode; long and unsigned long
to DImode; and long long and unsigned long long to TImode.

4.1 Routines for integer arithmetic

The integer arithmetic routines are used on platforms that don’t provide hardware support
for arithmetic operations on some modes.

4.1.1 Arithmetic functions

int __ashlsi3 (int a, int b) [Runtime Function]

long __ashldi3 (long a, int b) [Runtime Function]

long long __ashlti3 (long long a, int b) [Runtime Function]
These functions return the result of shifting a left by b bits.

int __ashrsi3 (int a, int b) [Runtime Function]

long __ashrdi3 (long a, int b) [Runtime Function]

long long __ashrti3 (long long a, int b) [Runtime Function]
These functions return the result of arithmetically shifting a right by b bits.

int __divsi3 (int a, int b) [Runtime Function]

long __divdi3 (long a, long b) [Runtime Function]

long long __divti3 (long long a, long long b) [Runtime Function]
These functions return the quotient of the signed division of a and b.

int __1shrsi3 (int a, int b) [Runtime Function]

long __1shrdi3 (long a, int b) [Runtime Function]

long long __lshrti3 (long long a, int b) [Runtime Function]

These functions return the result of logically shifting a right by b bits.



10 GNU Compiler Collection (GCC) Internals

int __modsi3 (int a, int b) [Runtime Function]

long __moddi3 (long a, long b) [Runtime Function]

long long __modti3 (long long a, long long b) [Runtime Function]
These functions return the remainder of the signed division of a and b.

int __mulsi3 (int a, int b) [Runtime Function]

long __muldi3 (long a, long b) [Runtime Function]

long long __multi3 (long long a, long long b) [Runtime Function]
These functions return the product of a and b.

long __negdi2 (long a) [Runtime Function]

long long __negti2 (long long a) [Runtime Function]
These functions return the negation of a.

unsigned int __udivsi3 (unsigned int a, unsigned int b) [Runtime Function]

unsigned long __udivdi3 (unsigned long a, unsigned long b) [Runtime Function]

unsigned long long __udivti3 (unsigned long long a, [Runtime Function]

unsigned long long b)
These functions return the quotient of the unsigned division of a and b.

unsigned long __udivmoddi4 (unsigned long a, unsigned long  [Runtime Function]
b, unsigned long *c)
unsigned long long __udivmodti4 (unsigned long long a, [Runtime Function]
unsigned long long b, unsigned long long *c)
These functions calculate both the quotient and remainder of the unsigned division
of a and b. The return value is the quotient, and the remainder is placed in variable
pointed to by c.

unsigned int __umodsi3 (unsigned int a, unsigned int b) [Runtime Function]
unsigned long __umoddi3 (unsigned long a, unsigned long b) [Runtime Function]
unsigned long long __umodti3 (unsigned long long a, [Runtime Function]

unsigned long long b)
These functions return the remainder of the unsigned division of a and b.

4.1.2 Comparison functions

The following functions implement integral comparisons. These functions implement a low-
level compare, upon which the higher level comparison operators (such as less than and
greater than or equal to) can be constructed. The returned values lie in the range zero
to two, to allow the high-level operators to be implemented by testing the returned result
using either signed or unsigned comparison.

int __cmpdi2 (long a, long b) [Runtime Function]
int __cmpti2 (long long a, long long b) [Runtime Function]
These functions perform a signed comparison of a and b. If a is less than b, they
return 0; if a is greater than b, they return 2; and if a and b are equal they return 1.

int __ucmpdi2 (unsigned long a, unsigned long b) [Runtime Function]
int __ucmpti2 (unsigned long long a, unsigned long long b) [Runtime Function]
These functions perform an unsigned comparison of a and b. If a is less than b, they
return 0; if a is greater than b, they return 2; and if a and b are equal they return 1.



Chapter 4: The GCC low-level runtime library 11

4.1.3 Trapping arithmetic functions

The following functions implement trapping arithmetic. These functions call the libc func-
tion abort upon signed arithmetic overflow.

int __absvsi2 (int a) [Runtime Function]

long __absvdi2 (long a) [Runtime Function]
These functions return the absolute value of a.

int __addvsi3 (int a, int b) [Runtime Function]

long __addvdi3 (long a, long b) [Runtime Function]
These functions return the sum of a and b; that is a + b.

int __mulvsi3 (int a, int b) [Runtime Function]

long __mulvdi3 (long a, long b) [Runtime Function]
The functions return the product of a and b; that is a * b.

int __negvsi2 (int a) [Runtime Function]

long __negvdi2 (long a) [Runtime Function]
These functions return the negation of a; that is -a.

int __subvsi3 (int a, int b) [Runtime Function]

long __subvdi3 (long a, long b) [Runtime Function]

These functions return the difference between b and a; that is a - b.

4.1.4 Bit operations

int
int
int

int
int
int

int
int

int
int
int

__clzsi2 (unsigned int a) [Runtime Function]
__clzdi2 (unsigned long a) [Runtime Function]
__clzti2 (unsigned long long a) [Runtime Function]

These functions return the number of leading 0-bits in a, starting at the most signif-
icant bit position. If a is zero, the result is undefined.

__ctzsi2 (unsigned int a) [Runtime Function]
__ctzdi2 (unsigned long a) [Runtime Function]
__ctzti2 (unsigned long long a) [Runtime Function]

These functions return the number of trailing 0-bits in a, starting at the least signif-
icant bit position. If a is zero, the result is undefined.

__ffsdi2 (unsigned long a) [Runtime Function]
__ffsti2 (unsigned long long a) [Runtime Function]
These functions return the index of the least significant 1-bit in a, or the value zero
if a is zero. The least significant bit is index one.

__paritysi2 (unsigned int a) [Runtime Function]
__paritydi2 (unsigned long a) [Runtime Function]
__parityti2 (unsigned long long a) [Runtime Function]

These functions return the value zero if the number of bits set in a is even, and the
value one otherwise.



12 GNU Compiler Collection (GCC) Internals

int __popcountsi2 (unsigned int a) [Runtime Function]
int __popcountdi2 (unsigned long a) [Runtime Function]
int __popcountti2 (unsigned long long a) [Runtime Function]

These functions return the number of bits set in a.

int32_t __bswapsi2 (int32_t a) [Runtime Function]
int64_t __bswapdi2 (int64-t a) [Runtime Function]
These functions return the a byteswapped.

4.2 Routines for floating point emulation

The software floating point library is used on machines which do not have hardware support
for floating point. It is also used whenever ‘-msoft-float’ is used to disable generation of
floating point instructions. (Not all targets support this switch.)

For compatibility with other compilers, the floating point emulation routines can be
renamed with the DECLARE_LIBRARY_RENAMES macro (see Section 18.12 [Library Calls]
page 560). In this section, the default names are used.

)

Presently the library does not support XFmode, which is used for long double on some
architectures.

4.2.1 Arithmetic functions

[Runtime Function]
double __adddf3 (double a, double b) [Runtime Function]
long double __addtf3 (long double a, long double b) [Runtime Function]
long double __addxf3 (long double a, long double b) [Runtime Function]

These functions return the sum of a and b.

float __addsf3 (float a, float b)

float __subsf3 (float a, float b) [Runtime Function]
double __subdf3 (double a, double b) [Runtime Function]
long double __subtf3 (long double a, long double b) [Runtime Function]
long double __subxf3 (long double a, long double b) [Runtime Function]

These functions return the difference between b and a; that is, a — b.

- [Runtime Function
double __muldf3 (double a, double b) [Runtime Function
long double __multf3 (long double a, long double b) [Runtime Function
long double __mulxf3 (long double a, long double b) [Runtime Function

These functions return the product of a and b.

float __mulsf3 (float a, float b)

]
]
]
]

float __divsf3 (float a, float b) [Runtime Function]
double __divdf3 (double a, double b) [Runtime Function]
long double __divtf3 (long double a, long double b) [Runtime Function]
long double __divxf3 (long double a, long double b) [Runtime Function]

These functions return the quotient of a and b; that is, a/b.

double __negdf2 (double a) [Runtime Function]

long double _negtf2 (long double a) [Runtime Function]

float __negsf2 (float a) [Runtime Function]



Chapter 4: The GCC low-level runtime library 13

long double __negxf2 (long double a) [Runtime Function]
These functions return the negation of a. They simply flip the sign bit, so they can
produce negative zero and negative NaN.

4.2.2 Conversion functions

- Runtime Function
long double __extendsftf2 (float a) Runtime Function

double __extendsfdf2 (float a) [ ]
[ ]
_extendsfxf2 (foat a) [Runtime Function]
[ ]
[ ]

long double _ (
long double __extenddftf2 (double a) Runtime Function
long double __extenddfxf2 (double a) Runtime Function

These functions extend a to the wider mode of their return type.

double __truncxfdf2 (long double a) [Runtime Function]
double __trunctfdf2 (long double a) [Runtime Function]
float __truncxfsf2 (long double a) [Runtime Function]
[ ]

|

float __trunctfsf2 (long double a) Runtime Function

float __truncdfsf2 (double a) [Runtime Function
These functions truncate a to the narrower mode of their return type, rounding toward
zZero.

int __fixsfsi (float a) [Runtime Function]

int __fixdfsi (double a) [Runtime Function]

int __fixtfsi (long double a) [Runtime Function]

int __fixxfsi (long double a) [Runtime Function]

These functions convert a to a signed integer, rounding toward zero.

long __fixsfdi (float a) [Runtime Function]

long __fixdfdi (double a) [Runtime Function]

long __fixtfdi (long double a) [Runtime Function]

long __fixxfdi (long double a) [Runtime Function]
These functions convert a to a signed long, rounding toward zero.

long long __fixsfti (float a) [Runtime Function]

long long __fixdfti (double a) [Runtime Function]

long long __fixtfti (long double a) [Runtime Function]

long long __fixxfti (long double a) [Runtime Function]
These functions convert a to a signed long long, rounding toward zero.

unsigned int __fixunssfsi (float a) [Runtime Function]
unsigned int __fixunsdfsi (double a) [Runtime Function]
unsigned int __fixunstfsi (long double a) [Runtime Function]
unsigned int __fixunsxfsi (long double a) [Runtime Function]

These functions convert a to an unsigned integer, rounding toward zero. Negative
values all become zero.

unsigned long __fixunssfdi (float a) [Runtime Function]
unsigned long __fixunsdfdi (double a) [Runtime Function]
unsigned long __fixunstfdi (long double a) [Runtime Function]



14 GNU Compiler Collection (GCC) Internals

unsigned long __fixunsxfdi (long double a) [Runtime Function]
These functions convert a to an unsigned long, rounding toward zero. Negative values
all become zero.

unsigned long long __fixunssfti (float a) [Runtime Function]
unsigned long long __fixunsdfti (double a) [Runtime Function]
unsigned long long __fixunstfti (long double a) [Runtime Function]
unsigned long long __fixunsxfti (long double a) [Runtime Function]

These functions convert a to an unsigned long long, rounding toward zero. Negative

values all become zero.
float __floatsisf (int i) [Runtime Function]
double __floatsidf (int i) [Runtime Function]
long double __floatsitf (int i) [Runtime Function]
long double __floatsixf (int i) [Runtime Function]
These functions convert i, a signed integer, to floating point.

float __floatdisf (long i) [Runtime Function]

double __floatdidf (long i) [Runtime Function]

long double __floatditf (long i) [Runtime Function]

long double __floatdixf (long i) [Runtime Function]
These functions convert i, a signed long, to floating point.

float __floattisf (long long 1) [Runtime Function]

double __floattidf (long long 1) [Runtime Function]

long double __floattitf (long long i) [Runtime Function]

long double __floattixf (long long i) [Runtime Function]
These functions convert i, a signed long long, to floating point.

float __floatunsisf (unsigned int i) [Runtime Function]
double __floatunsidf (unsigned int 1) [Runtime Function]
long double __floatunsitf (unsigned int i) [Runtime Function]
long double __floatunsixf (unsigned int i) [Runtime Function]

These functions convert i, an unsigned integer, to floating point.

float __floatundisf (unsigned long i) [Runtime Function]

double __floatundidf (unsigned long i) [Runtime Function]

long double __floatunditf (unsigned long i) [Runtime Function]

long double __floatundixf (unsigned long i) [Runtime Function]
These functions convert i, an unsigned long, to floating point.

float __floatuntisf (unsigned long long 1) [Runtime Function]
double __floatuntidf (unsigned long long i) [Runtime Function]
long double __floatuntitf (unsigned long long 1) [Runtime Function]

]

long double __floatuntixf (unsigned long long 1) [Runtime Function
These functions convert i, an unsigned long long, to floating point.



Chapter 4: The GCC low-level runtime library 15

4.2.3 Comparison functions

There are two sets of basic comparison functions.

int __cmpsf2 (float a, float b) [Runtime Function]
int __cmpdf2 (double a, double b) [Runtime Function]
int __cmptf2 (long double a, long double b) [Runtime Function]

These functions calculate a <=> b. That is, if a is less than b, they return —1; if
a is greater than b, they return 1; and if a and b are equal they return 0. If either
argument is NaN they return 1, but you should not rely on this; if NaN is a possibility,
use one of the higher-level comparison functions.

int __unordsf2 (float a, float b) [Runtime Function]
int __unorddf2 (double a, double b) [Runtime Function]
int __unordtf2 (long double a, long double b) [Runtime Function]

These functions return a nonzero value if either argument is NaN, otherwise 0.

There is also a complete group of higher level functions which correspond directly to
comparison operators. They implement the ISO C semantics for floating-point comparisons,
taking NaN into account. Pay careful attention to the return values defined for each set.
Under the hood, all of these routines are implemented as

if (__unordXf2 (a, b))
return E;
return __cmpXf2 (a, b);
where E is a constant chosen to give the proper behavior for NaN. Thus, the meaning
of the return value is different for each set. Do not rely on this implementation; only the
semantics documented below are guaranteed.

int __eqsf2 (float a, float b) [Runtime Function]

int __eqdf2 (double a, double b) [Runtime Function]

int __eqtf2 (long double a, long double b) [Runtime Function]
These functions return zero if neither argument is NalN, and a and b are equal.

int __nesf2 (float a, float b) [Runtime Function]

int __nedf2 (double a, double b) [Runtime Function]

int __netf2 (long double a, long double b) [Runtime Function]
These functions return a nonzero value if either argument is NaN, or if a and b are
unequal.

int __gesf2 (float a, float b) [Runtime Function]

int __gedf2 (double a, double b) [Runtime Function]

int __getf2 (long double a, long double b) [Runtime Function]

These functions return a value greater than or equal to zero if neither argument is
NaN, and a is greater than or equal to b.

int __1tsf2 (float a, float b) [Runtime Function]
int __1tdf2 (double a, double b) [Runtime Function]
int __1ttf2 (long double a, long double b) [Runtime Function]

These functions return a value less than zero if neither argument is NaN, and a is
strictly less than b.



16 GNU Compiler Collection (GCC) Internals

int __lesf2 (float a, float b) [Runtime Function]
int __ledf2 (double a, double b) [Runtime Function]
int __letf2 (long double a, long double b) [Runtime Function]

These functions return a value less than or equal to zero if neither argument is NaN,
and a is less than or equal to b.

int __gtsf2 (float a, float b) [Runtime Function]
int __gtdf2 (double a, double b) [Runtime Function]
int __gttf2 (long double a, long double b) [Runtime Function]

These functions return a value greater than zero if neither argument is NaN, and a is
strictly greater than b.

4.2.4 Other floating-point functions

float __powisf2 (float a, int b) [Runtime Function]

double __powidf2 (double a, int b) [Runtime Function]

long double __powitf2 (long double a, int b) [Runtime Function]

long double __powixf2 (long double a, int b) [Runtime Function]
These functions convert raise a to the power b.

complex float __mulsc3 (float a, float b, float c, float d) [Runtime Function]

complex double __muldc3 (double a, double b, double c, [Runtime Function]
double d)

complex long double __multc3 (long double a, long double [Runtime Function]

b, long double c, long double d)

complex long double __mulxc3 (long double a, long double [Runtime Function]
b, long double c, long double d)

These functions return the product of a 4+ ib and ¢ + id, following the rules of C99

Annex G.
complex float __divsc3 (float a, float b, float c, float d) [Runtime Function]
complex double __divdc3 (double a, double b, double c, [Runtime Function]
double d)

complex long double __divtc3 (long double a, long double [Runtime Function]
b, long double c, long double d)

complex long double __divxc3 (long double a, long double [Runtime Function]
b, long double c, long double d)

These functions return the quotient of a + ib and ¢ + id (i.e., (a+ ib)/(c + id)),
following the rules of C99 Annex G.

4.3 Routines for decimal floating point emulation

The software decimal floating point library implements IEEE 754-2008 decimal floating
point arithmetic and is only activated on selected targets.

The software decimal floating point library supports either DPD (Densely Packed Deci-
mal) or BID (Binary Integer Decimal) encoding as selected at configure time.



Chapter 4: The GCC low-level runtime library

4.3.1 Arithmetic functions

_Decimal32 __ (-Decimal32 a, _Decimal32 b)
_Decimal32 __bid_addsd3 (_Decimal32 a, -Decimal32 b)
_Decimal64 __dpd_adddd3 (-Decimal64 a, -Decimal64 b)
_Decimal64 __bid_adddd3 (-Decimal64 a, -Decimal64 b)
_Decimal128 __dpd_addtd3 (_Decimall28 a, -Decimall28 b)
_Decimall28 __bid_addtd3 (_Decimall28 a, _Decimall28 b)

These functions return the sum of a and b.

dpd_addsd3

_Decimal32 __dpd_subsd3 (_Decimal32 a, -Decimal32 b)
_Decimal32 __bid_subsd3 (_Decimal32 a, -Decimal32 b)
_Decimal64 __dpd_subdd3 (_Decimal64 a, -Decimal64 b)
_Decimal64 __bid_subdd3 (_Decimal64 a, -Decimal64 b)
_Decimal128 __dpd_subtd3 (_Decimall28 a, -Decimall28 b)
_Decimall28 __bid_subtd3 (_Decimall28 a, -Decimall28 b)

17

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

]
]
]
]
]
]

These functions return the difference between b and a; that is, a — b.

_Decimal32 __dpd_mulsd3

_Decimal32 __bid_mulsd3

_Decimal64 __dpd_muldd3

_Decimal64 __bid_muldd3 (_Decimal64 a, -Decimal64 b)

_Decimall128 __dpd_multd3 (_Decimall28 a, -Decimall28 b)

_Decimall28 __bid_multd3 (_Decimall28 a, -Decimall28 b)
These functions return the product of a and b.

-Decimal32 a, _Decimal32 b)
_Decimal32 a, _Decimal32 b)
_Decimal64 a, _Decimal64 b)

A~ N S~

_Decimal32 __dpd_divsd3 (_Decimal32 a, -Decimal32 b)
_Decimal32 __bid_divsd3 (_Decimal32 a, _Decimal32 b)
_Decimal64 __dpd_divdd3 (_Decimal64 a, -Decimal64 b)
_Decimal64 __bid_divdd3 (-Decimal64 a, -Decimal64 b)
_Decimall128 __dpd_divtd3 (_Decimall28 a, -Decimall28 b)
_Decimall28 __bid_divtd3 (_Decimall28 a, -Decimall28 b)
These functions return the quotient of a and b; that is, a/b.

_Decimal32 __dpd_negsd2 (_Decimal32 a)
_Decimal32 __bid_negsd2 (_Decimal32 a)
_Decimal64 __dpd_negdd2 (_Decimal64 a)
_Decimal64 __bid_negdd2 (-Decimal64 a)
_Decimal128 __dpd_negtd2 (_Decimall28 a)
_Decimal128 __bid_negtd2 (_Decimall28 a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

]
]
]
]
]
]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the negation of a. They simply flip the sign bit, so they can

produce negative zero and negative NaN.
4.3.2 Conversion functions

_Decimal64 __dpd_extendsddd2 (_Decimal32 a)
_Decimal64 __bid_extendsddd2 (_Decimal32 a)
_Decimal128 __dpd_extendsdtd2 (_Decimal32 a)
_Decimall28 __bid_extendsdtd2 (_Decimal32 a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



18 GNU Compiler Collection (GCC) Internals

Runtime Function
Runtime Function
Runtime Function
Runtime Function

_Decimall128 __dpd_extendddtd2 (_Decimal64 a) [ ]
[ ]
[ ]
[ ]
[Runtime Function]
[ ]
[ ]
[ ]

_Decimall28 __bid_extendddtd2 (_Decimal64 a)
_Decimal32 __dpd_truncddsd2 ecimal64 a)
ecimal64 a)

(
_Decimal32 __bid_truncddsd2 (
_Decimal32 __dpd_trunctdsd2 (_-Decimall28 a)
_Decimal32 __bid_trunctdsd2 (_Decimall28 a)
_Decimal64 __dpd_trunctddd2 (_Decimall28 a) Runtime Function
_Decimal64 __bid_trunctddd2 (_Decimall28 a) Runtime Function
These functions convert the value a from one decimal floating type to another.

_Decimal64 __dpd_extendsfdd (float a)
_Decimal64 __bid_extendsfdd (float a)
_Decimal128 __dpd_extendsftd (float a)
_Decimall28 __bid_extendsftd (float a)
_Decimall28 __dpd_extenddftd (double a)
_Decimall28 __bid_extenddftd (double a)
_Decimall128 __dpd_extendxftd (long double a)

_D
_D
_D
_D

Runtime Function

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
_Decimal128 __bid_extendxftd (long double a) [Runtime Function]
_Decimal32 __dpd_truncdfsd (double a) [Runtime Function]
_Decimal32 __bid_truncdfsd (double a) [Runtime Function]
_Decimal32 __dpd_truncxfsd (long double a) [Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]

[Runtime Function]

[ ]

[ ]

]

(
(
_Decimal32 __bid_truncxfsd (long double a)
_Decimal32 __dpd_trunctfsd (long double a)
_Decimal32 __bid_trunctfsd (long double a)
_Decimal64 __dpd_truncxfdd (long double a)
_Decimal64 __bid_truncxfdd (long double a) Runtime Function
_Decimal64 __dpd_trunctfdd (long double a) Runtime Function
_Decimal64 __bid_trunctfdd (long double a) [Runtime Function
These functions convert the value of a from a binary floating type to a decimal floating
type of a different size.

float __dpd_truncddsf (_Decimal64 a)

float __bid_truncddsf (_Decimal64 a)

float __dpd_trunctdsf (_Decimall28 a)
float __bid_trunctdsf (_Decimall28 a)
double __dpd_extendsddf (-Decimal32 a)
double __bid_extendsddf (.Decimal32 a)
double __dpd_trunctddf (_Decimall28 a) Runtime Function
double __bid_trunctddf (_Decimall28 a) Runtime Function

[Runtime Function]
[ ]
[ ]
[ ]
[ ]
[ ]
==
long double __dpd_extendsdxf (_Decimal32 a) [Runtime Function]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

long double __bid_extendsdxf (_Decimal32 a) Runtime Function
long double __dpd_extendddxf (_Decimal64 a) Runtime Function
long double __bid_extendddxf (_Decimal64 a) Runtime Function
long double __dpd_trunctdxf (_Decimall28 a) Runtime Function
long double __bid_trunctdxf (-Decimall28 a) Runtime Function
long double __dpd_extendsdtf (_Decimal32 a) Runtime Function
-Decimal32 a) Runtime Function
_Decimal64 a) Runtime Function

long double __bid_extendsdtf
long double __dpd_extendddtf

—_



Chapter 4: The GCC low-level runtime library

long double __bid_extendddtf (_Decimal64 a)
These functions convert the value of a from a decimal floating type to a binary floating
type of a different size.

_Decimal32 __dpd_extendsfsd (float a)

_Decimal64 __dpd_extenddfdd (double a)

(
_Decimal32 __bid_extendsfsd (float a)

(

(

_Decimal64 __bid_extenddfdd (double a)

_Decimall28 __dpd_extendtftd (long double a)

_Decimall128 __bid_extendtftd (long double a)

float __dpd_truncsdsf (_Decimal32 a)

float __bid_truncsdsf (_Decimal32 a)

double __dpd_truncdddf (-Decimal64 a)

double __bid_truncdddf (-Decimal64 a)

long double __dpd_trunctdtf (_Decimall28 a)

long double __bid_trunctdtf (_Decimall28 a)
These functions convert the value of a between decimal and binary floating types of
the same size.

int __dpd_fixsdsi (
int __bid_fixsdsi (
__dpd_fixddsi (
(
(

int

int __bid_fixddsi
int __dpd_fixtdsi
int __bid_fixtdsi

_Decimal32 a
_Decimal32 a
_Decimal64 a
_Decimal64 a

)
)
)
)

_Decimall28 a)
(-Decimall28 a)

These functions convert a to a signed integer.

long __dpd_fixsddi (
long __bid_fixsddi (
long __dpd_fixdddi (_Decimal64
long __bid_fixdddi (
long __dpd_fixtddi (
long __bid_fixtddi

_Decimal32
_Decimal32

_Decimal64

)
a)
a)
a)

_Decimall28 a)
(-Decimall28 a)

These functions convert a to a signed long.

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

int
int
int
int
int
int

__dpd_fixunssdsi (-Decimal32 a)
(-Decimal32 a)
(-Decimal64 a)
(-Decimal64 a)
(_Decimall28 a)
(-Decimall28 a)
These functions convert a to an unsigned integer. Negative values all become zero.

__bid_fixunssdsi
__dpd_fixunsddsi
__bid_fixunsddsi
__dpd_fixunstdsi
__bid_fixunstdsi

unsigned long __dpd_fixunssddi
unsigned long __bid_fixunssddi

unsigned long __bid_fixunsdddi

(
(
unsigned long __dpd_fixunsdddi (
(
(

unsigned long __dpd_fixunstddi

-Decimal32 a)
_Decimal32 a)
_Decimal64 a)
_Decimal64 a)
_Decimall28 a)

19
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



20

GNU Compiler Collection (GCC) Internals

unsigned long __bid_fixunstddi (_Decimall28 a)
These functions convert a to an unsigned long. Negative values all become zero.

_Decimal32 __dpd_floatsisd
_Decimal32 __bid_floatsisd
_Decimal64 __dpd_floatsidd
_Decimal64 __bid_floatsidd

int 1)
int 1)
int 1)
int 1)

~ A~~~

_Decimall28 __dpd_floatsitd (int i)
_Decimall28 __bid_floatsitd (int i)
These functions convert i, a signed integer, to decimal floating point.

_Decimal32 __dpd_floatdisd (long i)
_Decimal32 __bid_floatdisd (long i)
_Decimal64 __dpd_floatdidd (long i)
_Decimal64 __bid_floatdidd (long i)

_Decimall28

dpd_floatditd (long 1)

_Decimall28 __bid_floatditd (long i)
These functions convert i, a signed long, to decimal floating point.

_Decimal32 __dpd_floatunssisd

_Decimal64 __dpd_floatunssidd

unsigned int i

unsigned int i

( )

_Decimal32 __bid_floatunssisd (unsigned int i)
( )
(

_Decimal64 __bid_floatunssidd

nsigned int 1)

u
_Decimall28 __dpd_floatunssitd (unsigned int 1)
_Decimall128 __bid_floatunssitd (unsigned int i)
These functions convert i, an unsigned integer, to decimal floating point.

_Decimal32 __dpd_floatunsdisd
_Decimal32 __bid_floatunsdisd

unsigned long 1)
unsigned long 1)
)

(
(

_Decimal64 __dpd_floatunsdidd (unsigned long i
(

_Decimal64 __bid_floatunsdidd (u
_Decimall128 __dpd_floatunsditd (unsigned long i)
_Decimall128 __bid_floatunsditd (unsigned long 1)

nsigned long 1)

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions convert i, an unsigned long, to decimal floating point.

4.3.3 Comparison functions

int
int
int
int
int
int

__dpd_unordsd?2
__bid_unordsd2
__dpd_unorddd?2
__bid_unorddd2
dpd_unordtd?2

(
(
(
(
(

-Decimal32 a, _Decimal32 b)
-Decimal32 a, _Decimal32 b)
_Decimal64 a, _Decimal64 b)
_Decimal64 a, _Decimal64 b)
_Decimall28 a, _Decimall28 b)

__bid_unordtd2 (_Decimall28 a, -Decimall28 b)
These functions return a nonzero value if either argument is NaN, otherwise 0.

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

There is also a complete group of higher level functions which correspond directly to
comparison operators. They implement the ISO C semantics for floating-point comparisons,
taking NaN into account. Pay careful attention to the return values defined for each set.
Under the hood, all of these routines are implemented as



Chapter 4: The GCC low-level runtime library 21

if (__bid_unordXd2 (a, b))
return E;
return __bid_cmpXd2 (a, b);

where E is a constant chosen to give the proper behavior for NaN. Thus, the meaning
of the return value is different for each set. Do not rely on this implementation; only the
semantics documented below are guaranteed.

int __dpd_eqsd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]
int __bid_eqsd2 (_-Decimal32 a, _Decimal32 b) [Runtime Function]
int __dpd_eqdd2 (_Decimal64 a, _Decimal64 b) [Runtime Function]
int __bid_eqdd2 (_-Decimal64 a, Decimal64 b) [Runtime Function]
int __dpd_eqtd2 (_Decimall28 a, Decimall28 b) [Runtime Function]
int __bid_eqtd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]

These functions return zero if neither argument is NalN, and a and b are equal.

Runtime Function
Runtime Function

int __dpd_nesd2 (_Decimal32 a, _Decimal32 b [ ]
[ ]
[Runtime Function]
[ ]
[ ]

]

(-D )
int __bid_nesd2 (_Decimal32 a, _Decimal32 b)
int __dpd_nedd2 (_Decimal64 a, _Decimal64 b)
int __bid_nedd2 (_Decimal64 a, _Decimal64 b)
int __dpd_netd2 (_Decimall28 a, _Decimall28 b)

Runtime Function
Runtime Function

int __bid_netd2 (_Decimall28 a, -Decimall28 b) [Runtime Function
These functions return a nonzero value if either argument is NaN, or if a and b are
unequal.

int __dpd_gesd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]
int __bid_gesd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]
int __dpd_gedd2 (-Decimal64 a, -Decimal64 b) [Runtime Function]
int __bid_gedd2 (_Decimal64 a, _Decimal64 b) [Runtime Function]
int __dpd_getd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]
int __bid_getd2 (_Decimall28 a, -Decimall28 b) [Runtime Function]

These functions return a value greater than or equal to zero if neither argument is

NaN, and a is greater than or equal to b.

int __dpd_1tsd2 (_Decimal32 a, _Decimal32 b)
int __bid_1tsd2 (_Decimal32 a, _Decimal32 b)
)
)

( Runtime Function
(
int __dpd_1tdd2 (_Decimal64 a, -Decimal64 b
(
(

Runtime Function
Runtime Function
int __bid_1tdd2 (_Decimal64 a, _Decimal64 b Runtime Function
int __dpd_1ttd2 (_Decimall28 a, -Decimall28 b) Runtime Function
int __bid_1ttd2 (_Decimall28 a, -Decimall28 b) Runtime Function

These functions return a value less than zero if neither argument is NaN, and a is

strictly less than b.

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

int __dpd_lesd2 (_Decimal32 a, _Decimal32 b) [Runtime Function]
int __bid_lesd2 (_Decimal32 a, -Decimal32 b) [Runtime Function]
int __dpd_ledd2 (_Decimal64 a, _Decimal64 b) [Runtime Function]
int __bid_ledd2 (_Decimal64 a, Decimal64 b) [Runtime Function]
int __dpd_letd2 (_Decimall28 a, _Decimall28 b) [Runtime Function]



22 GNU Compiler Collection (GCC) Internals

int __bid_letd2 (_Decimall28 a, -Decimall28 b) [Runtime Function]
These functions return a value less than or equal to zero if neither argument is NaN,
and a is less than or equal to b.

int __dpd_gtsd2 (_Decimal32 a, _Decimal32 b
_Decimal32 a, _Decimal32 b

) Runtime Function
int __bid_gtsd2 )
_Decimal64 a, _Decimal64 b)
)

Runtime Function
Runtime Function

[ ]
[ ]
int __dpd_gtdd2 [ ]
[Runtime Function]
[ ]
[ ]

(
(
int __bid_gtdd2 (-Decimal64 a, -Decimal64 b
int __dpd_gttd2 (_Decimall28 a, -Decimall28 b) Runtime Function
int __bid_gttd2 (_Decimall28 a, Decimall28 b) Runtime Function
These functions return a value greater than zero if neither argument is NaN, and a is
strictly greater than b.

4.4 Routines for fixed-point fractional emulation

The software fixed-point library implements fixed-point fractional arithmetic, and is only
activated on selected targets.

For ease of comprehension fract is an alias for the _Fract type, accum an alias for
_Accum, and sat an alias for _Sat.

For illustrative purposes, in this section the fixed-point fractional type short fract is as-
sumed to correspond to machine mode QQmode; unsigned short fract to UQQmode; fract
to HQmode; unsigned fract to UHQmode; long fract to SQmode; unsigned long fract
to USQmode; long long fract to DQmode; and unsigned long long fract to UDQmode.
Similarly the fixed-point accumulator type short accum corresponds to HAmode;
unsigned short accum to UHAmode; accum to SAmode; unsigned accum to USAmode;
long accum to DAmode; unsigned long accum to UDAmode; long long accum to TAmode;
and unsigned long long accum to UTAmode.

4.4.1 Arithmetic functions

short fract __addqq3 (short fract a, short fract b) Runtime Function
fract __addhq3 (fract a, fract b) Runtime Function

[ ]
[ ]
_addsq3 (long fract a, long fract b) [Runtime Function]
[ ]

long fract _

long long fract __adddq3 (long long fract a, long long fract Runtime Function
b)

unsigned short fract __adduqq3 (unsigned short fract a, [Runtime Function]
unsigned short fract b)

unsigned fract __adduhq3 (unsigned fract a, unsigned fract [Runtime Function]
b)

unsigned long fract __addusq3 (unsigned long fract a, [Runtime Function]

unsigned long fract b)
unsigned long long fract __addudq3 (unsigned long long [Runtime Function]
fract a, unsigned long long fract b)
short accum __addha3 (short accum a, short accum b)
accum __addsa3 (accum a, accum b)
long accum __addda3 (long accum a, long accum b)
long long accum __addta3 (long long accum a, long long

accum b)

Runtime Function
Runtime Function
Runtime Function
Runtime Function

[ ]
[ ]
[ ]
[ ]



Chapter 4: The GCC low-level runtime library

unsigned short accum __adduha3 (unsigned short accum a,
unsigned short accum b)

unsigned accum __addusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __adduda3 (unsigned long accum a,
unsigned long accum b)

unsigned long long accum __adduta3 (unsigned long long
accum a, unsigned long long accum b)

These functions return the sum of a and b.

short fract __ssaddqq3 (short fract a, short fract b)

fract __ssaddhq3 (fract a, fract b)

long fract __ssaddsq3 (long fract a, long fract b)

long long fract __ssadddq3 (long long fract a, long long
fract b)

short accum __ssaddha3 (short accum a, short accum b)

accum __ssaddsa3 (accum a, accum b)

long accum __ssaddda3 (long accum a, long accum b)
long long accum __ssaddta3 (long long accum a, long long
accum b)

23

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the sum of a and b with signed saturation.

unsigned short fract __usadduqq3 (unsigned short fract a,
unsigned short fract b)

unsigned fract __usadduhq3 (unsigned fract a, unsigned
fract b)

unsigned long fract __usaddusq3 (unsigned long fract a,
unsigned long fract b)

unsigned long long fract __usaddudq3 (unsigned long
long fract a, unsigned long long fract b)

unsigned short accum __usadduha3 (unsigned short accum
a, unsigned short accum b)

unsigned accum __usaddusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __usadduda3 (unsigned long accum a,
unsigned long accum b)

unsigned long long accum __usadduta3 (unsigned long
long accum a, unsigned long long accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

These functions return the sum of a and b with unsigned saturation.

short fract __subqq3 (short fract a, short fract b)

fract __subhq3 (fract a, fract b)

long fract __subsq3 (long fract a, long fract b)

long long fract __subdq3 (long long fract a, long long fract
b)

unsigned short fract __subuqq3 (unsigned short fract a,
unsigned short fract b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]



24 GNU Compiler Collection (GCC) Internals

unsigned fract __subuhq3 (unsigned fract a, unsigned fract
b)

unsigned long fract __subusq3 (unsigned long fract a,
unsigned long fract b)

unsigned long long fract __subudq3 (unsigned long long
fract a, unsigned long long fract b)

short accum __subha3 (short accum a, short accum b)

accum __subsa3 (accum a, accum b)

long accum __subda3 (long accum a, long accum b)

long long accum __subta3 (long long accum a, long long
accum b)

unsigned short accum __subuha3 (unsigned short accum a,
unsigned short accum b)

unsigned accum __subusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __subuda3 (unsigned long accum a,
unsigned long accum b)

unsigned long long accum __subuta3 (unsigned long long
accum a, unsigned long long accum b)

These functions return the difference of a and b; that is, a - b.

short fract

sssubqq3 (short fract a, short fract b)

fract __sssubhqg3 (fract a, fract b)

long fract __sssubsq3 (long fract a, long fract b)

long long fract __sssubdq3 (long long fract a, long long
fract b)

short accum __sssubha3 (short accum a, short accum b)

accum __sssubsa3 (accum a, accum b)

long accum __sssubda3 (long accum a, long accum b)
long long accum __sssubta3 (long long accum a, long long
accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function

[ ]
[ ]
[ ]
[ ]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the difference of a and b with signed saturation; that is, a -

b.

unsigned short fract __ussubuqq3 (unsigned short fract a,
unsigned short fract b)

unsigned fract __ussubuhq3 (unsigned fract a, unsigned
fract b)

unsigned long fract __ussubusq3 (unsigned long fract a,
unsigned long fract b)

unsigned long long fract __ussubudq3 (unsigned long
long fract a, unsigned long long fract b)

unsigned short accum __ussubuha3 (unsigned short accum
a, unsigned short accum b)

unsigned accum __ussubusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __ussubuda3 (unsigned long accum a,
unsigned long accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]



Chapter 4: The GCC low-level runtime library

unsigned long long accum __ussubuta3 (unsigned long
long accum a, unsigned long long accum b)

25

[Runtime Function]

These functions return the difference of a and b with unsigned saturation; that is, a

- b.

short fract __mulqq3 (short fract a, short fract b)

fract __mulhq3 (fract a, fract b)

long fract __mulsq3 (long fract a, long fract b)

long long fract __muldq3 (long long fract a, long long fract
b)

unsigned short fract __muluqq3 (unsigned short fract a,
unsigned short fract b)

unsigned fract __muluhq3 (unsigned fract a, unsigned fract
b)

unsigned long fract __mulusq3 (unsigned long fract a,
unsigned long fract b)

unsigned long long fract __muludq3 (unsigned long long
fract a, unsigned long long fract b)

short accum __mulha3 (short accum a, short accum b)

accum __mulsa3 (accum a, accum b)

long accum __mulda3 (long accum a, long accum b)

long long accum __multa3 (long long accum a, long long
accum b)

unsigned short accum __muluha3 (unsigned short accum a,
unsigned short accum b)

unsigned accum __mulusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __muluda3 (unsigned long accum a,
unsigned long accum b)

unsigned long long accum __muluta3 (unsigned long long
accum a, unsigned long long accum b)

These functions return the product of a and b.

short fract __ssmulqq3 (short fract a, short fract b)

fract __ssmulhq3 (fract a, fract b)

long fract __ssmulsq3 (long fract a, long fract b)

long long fract __ssmuldq3 (long long fract a, long long
fract b)

short accum __ssmulha3 (short accum a, short accum b)

accum __ssmulsa3 (accum a, accum b)

long accum __ssmulda3 (long accum a, long accum b)
long long accum __ssmulta3 (long long accum a, long long
accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the product of a and b with signed saturation.



26 GNU Compiler Collection (GCC) Internals

unsigned short fract __usmuluqq3 (unsigned short fract a,
unsigned short fract b)

unsigned fract __usmuluhq3 (unsigned fract a, unsigned
fract b)

unsigned long fract __usmulusq3 (unsigned long fract a,
unsigned long fract b)

unsigned long long fract __usmuludq3 (unsigned long
long fract a, unsigned long long fract b)

unsigned short accum __usmuluha3 (unsigned short accum
a, unsigned short accum b)

unsigned accum __usmulusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __usmuluda3 (unsigned long accum a,
unsigned long accum b)

unsigned long long accum __usmuluta3 (unsigned long
long accum a, unsigned long long accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

These functions return the product of a and b with unsigned saturation.

short fract __divqq3 (short fract a, short fract b)

fract __divhq3 (fract a, fract b)

long fract __divsq3 (long fract a, long fract b)

long long fract __divdq3 (long long fract a, long long fract
b)

short accum __divha3 (short accum a, short accum b)

accum __divsa3 (accum a, accum b)

long accum __divda3 (long accum a, long accum b)

long long accum __divta3 (long long accum a, long long
accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the quotient of the signed division of a and b.

unsigned short fract __udivuqq3 (unsigned short fract a,
unsigned short fract b)

unsigned fract __udivuhq3 (unsigned fract a, unsigned fract
b)

unsigned long fract __udivusq3 (unsigned long fract a,
unsigned long fract b)

unsigned long long fract __udivudq3 (unsigned long long
fract a, unsigned long long fract b)

unsigned short accum __udivuha3 (unsigned short accum a,
unsigned short accum b)

unsigned accum __udivusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __udivuda3 (unsigned long accum a,
unsigned long accum b)

unsigned long long accum __udivuta3 (unsigned long long
accum a, unsigned long long accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

These functions return the quotient of the unsigned division of a and b.



Chapter 4: The GCC low-level runtime library

short fract __ssdivqq3 (short fract a, short fract b)

fract __ssdivhqg3 (fract a, fract b)

long fract __ssdivsq3 (long fract a, long fract b)

long long fract __ssdivdq3 (long long fract a, long long
fract b)

short accum __ssdivha3 (short accum a, short accum b)

accum __ssdivsa3 (accum a, accum b)

long accum __ssdivda3 (long accum a, long accum b)
long long accum __ssdivta3 (long long accum a, long long
accum b)

27

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the quotient of the signed division of a and b with signed

saturation.

unsigned short fract __usdivuqq3 (unsigned short fract a,
unsigned short fract b)

unsigned fract __usdivuhq3 (unsigned fract a, unsigned
fract b)

unsigned long fract __usdivusq3 (unsigned long fract a,
unsigned long fract b)

unsigned long long fract __usdivudq3 (unsigned long
long fract a, unsigned long long fract b)

unsigned short accum __usdivuha3 (unsigned short accum
a, unsigned short accum b)

unsigned accum __usdivusa3 (unsigned accum a, unsigned
accum b)

unsigned long accum __usdivuda3 (unsigned long accum a,
unsigned long accum b)

unsigned long long accum __usdivuta3 (unsigned long
long accum a, unsigned long long accum b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

These functions return the quotient of the unsigned division of a and b with unsigned

saturation.

short fract __negqq2 (short fract a)

fract __neghq2 (fract a)

long fract __negsq2 (long fract a)

long long fract __negdq2 (long long fract a)

unsigned short fract __neguqq2 (unsigned short fract a)

unsigned fract __neguhq2 (unsigned fract a)

unsigned long fract __negusq2 (unsigned long fract a)

unsigned long long fract __negudq2 (unsigned long long
fract a)

short accum __negha?2 (short accum a)

accum __negsa2 (accum a)

long accum __negda2 (long accum a)

long long accum __negta2 (long long accum a)

unsigned short accum __neguha2 (unsigned short accum a)

unsigned accum __negusa2 (unsigned accum a)

unsigned long accum __neguda2 (unsigned long accum a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



28 GNU Compiler Collection (GCC) Internals

unsigned long long accum __neguta2 (unsigned long long
accum a)

These functions return the negation of a.

short fract __ssnegqq2 (short fract a)

fract __ssneghq2 (fract a)

long fract __ssnegsq2 (long fract a)

long long fract __ssnegdq2 (long long fract a)
short accum __ssnegha?2 (short accum a)

accum __ssnegsa2 (accum a)

long accum __ssnegda2 (long accum a)

long long accum __ssnegta2 (long long accum a)

These functions return the negation of a with signed saturation.

unsigned short fract __usneguqq2 (unsigned short fract a)

unsigned fract __usneguhq2 (unsigned fract a)

unsigned long fract __usnegusq2 (unsigned long fract a)

unsigned long long fract __usnegudq2 (unsigned long
long fract a)

unsigned short accum
a)

unsigned accum __usnegusa2 (unsigned accum a)

unsigned long accum __usneguda?2 (unsigned long accum a)

unsigned long long accum __usneguta2 (unsigned long
long accum a)

__usneguha?2 (unsigned short accum

[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

These functions return the negation of a with unsigned saturation.

short fract __ashlqq3 (short fract a, int b)

fract __ashlhq3 (fract a, int b)

long fract __ashlsq3 (long fract a, int b)

long long fract __ashldq3 (long long fract a, int b)

unsigned short fract __ashluqq3 (unsigned short fract a,
int b)

unsigned fract __ashluhq3 (unsigned fract a, int b)

unsigned long fract __ashlusq3 (unsigned long fract a, int
b)

unsigned long long fract
fract a, int b)

short accum __ashlha3 (short accum a, int b)

accum __ashlsa3 (accum a, int b)

long accum __ashlda3 (long accum a, int b)

long long accum __ashlta3 (long long accum a, int b)

unsigned short accum __ashluha3 (unsigned short accum a,
int b)

unsigned accum __ashlusa3 (unsigned accum a, int b)

unsigned long accum __ashluda3 (unsigned long accum a,

int b)

_ashludqg3 (unsigned long long

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]



Chapter 4: The GCC low-level runtime library

unsigned long long accum __ashluta3 (unsigned long long
accum a, int b)

These functions return the result of shifting a left by b bits.

short fract __ashrqq3 (short fract a, int b)

fract __ashrhq3 (fract a, int b)

long fract __ashrsq3 (long fract a, int b)

long long fract __ashrdq3 (long long fract a, int b)
short accum __ashrha3 (short accum a, int b)

accum __ashrsa3 (accum a, int b)

long accum __ashrda3 (long accum a, int b)

long long accum __ashrta3 (long long accum a, int b)

29
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the result of arithmetically shifting a right by b bits.

unsigned short fract
int b)

unsigned fract __lshruhq3 (unsigned fract a, int b)

unsigned long fract __lshrusq3 (unsigned long fract a, int
b)

unsigned long long fract
fract a, int b)

unsigned short accum
int b)

unsigned accum __lshrusa3 (unsigned accum a, int b)

unsigned long accum __lshruda3 (unsigned long accum a,
int b)

unsigned long long accum
accum a, int b)

_1shruqqg3 (unsigned short fract a,

_1shrudqg3 (unsigned long long

_1lshruha3 (unsigned short accum a,

_1lshruta3 (unsigned long long

[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

These functions return the result of logically shifting a right by b bits.

fract __ssashlhq3 (fract a, int b)

long fract __ssashlsq3 (long fract a, int b)

long long fract __ssashldq3 (long long fract a, int b)
short accum __ssashlha3 (short accum a, int b)

accum __ssashlsa3 (accum a, int b)

long accum __ssashlda3 (long accum a, int b)

long long accum __ssashlta3 (long long accum a, int b)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions return the result of shifting a left by b bits with signed saturation.

unsigned short fract
a, int b)

unsigned fract __usashluhq3 (unsigned fract a, int b)

unsigned long fract __usashlusq3 (unsigned long fract a,
int b)

unsigned long long fract
long fract a, int b)

unsigned short accum
a, int b)

_usashluqq3 (unsigned short fract

_usashludq3 (unsigned long

_usashluha3 (unsigned short accum

[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]



30 GNU Compiler Collection (GCC) Internals

unsigned accum __usashlusa3 (unsigned accum a, int b) [Runtime Function]

unsigned long accum __usashluda3 (unsigned long accum [Runtime Function]
a, int b)
unsigned long long accum __usashluta3 (unsigned long [Runtime Function]

long accum a, int b)
These functions return the result of shifting a left by b bits with unsigned saturation.

4.4.2 Comparison functions

The following functions implement fixed-point comparisons. These functions implement a
low-level compare, upon which the higher level comparison operators (such as less than and
greater than or equal to) can be constructed. The returned values lie in the range zero
to two, to allow the high-level operators to be implemented by testing the returned result
using either signed or unsigned comparison.

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

int __cmpqq2 (short fract a, short fract b)

int __cmphq2 (fract a, fract b)

int __cmpsq2 (long fract a, long fract b)

int __cmpdq2 (long long fract a, long long fract b)

int __cmpuqq2 (unsigned short fract a, unsigned short fract b)

int __cmpuhq2 (unsigned fract a, unsigned fract b)

int __cmpusq2 (unsigned long fract a, unsigned long fract b)

int __cmpudq2 (unsigned long long fract a, unsigned long long

fract b)

int __cmpha2 (short accum a, short accum b) [Runtime Function]

int __cmpsa2 (accum a, accum b) [Runtime Function]
(Iong accum a, long accum b) [Runtime Function]
( [ ]

[ ]

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

int __cmpda2
int __cmpta2 (long long accum a, long long accum b) Runtime Function
Runtime Function

int __cmpuha?2 (unsigned short accum a, unsigned short accum

b)

int __cmpusa2 (unsigned accum a, unsigned accum b) [Runtime Function]

int __cmpuda2 (unsigned long accum a, unsigned long accum b)  [Runtime Function]

int __cmputa2 (unsigned long long accum a, unsigned long long [Runtime Function]
accum b)

These functions perform a signed or unsigned comparison of a and b (depending on
the selected machine mode). If a is less than b, they return 0; if a is greater than b,
they return 2; and if a and b are equal they return 1.

4.4.3 Conversion functions

Runtime Function
Runtime Function

Runtime Function
short accum __fractqgha (short fract a) Runtime Function

fract __fractqqhq2 (short fract a) [ ]
[ ]
e
accum __fractqqgsa (short fract a) [Runtime Function]
[ ]
[ ]
[ ]
[ ]

long fract __fractqqgsq2 (short fract a)
long long fract __fractqqdq2 (short fract a)

long accum __fractqqgda (short fract a) Runtime Function
long long accum __fractqqta (short fract a) Runtime Function
unsigned short fract __fractqquqq (short fract a) Runtime Function

Runtime Function

unsigned fract __fractqquhq (short fract a)



Chapter 4: The GCC low-level runtime library

unsigned long fract __fractqqusq (short fract a)
unsigned long long fract __fractqqudq (short fract a)
unsigned short accum __fractqquha (short fract a)
unsigned accum __fractqqusa (short fract a)

unsigned long accum __fractqquda (short fract a)
unsigned long long accum __fractqquta (short fract a)
signed char __fractqqqi (short fract a)

short __fractqqhi (short fract a)

int __fractqqsi (short fract a)

long __fractqqdi (short fract a)

long long __fractqqti (short fract a)

float __fractqqgsf (short fract a)

double __fractqqdf (short fract a)
short fract __fracthqqq2 (fract a)
long fract __fracthqgsq2 (fract a)

long long fract __fracthqdq2 (fract a)
short accum __fracthgha (fract a)
accum __fracthqgsa (fract a)

long accum __fracthqda (fract a)
long long accum __fracthqta (fract a)
unsigned short fract __fracthquqq (
unsigned fract __fracthquhq (fract a)
unsigned long fract __fracthqusq (fract a)
unsigned long long fract __fracthqudq (fract a)
unsigned short accum __fracthquha (fract a)
unsigned accum __fracthqusa (fract a)

unsigned long accum __fracthquda (fract a)
unsigned long long accum __fracthquta (fract a)
signed char __fracthqqi (fract a)

short __fracthqhi (fract a)

int __fracthqgsi (fract a)

long __fracthqdi (fract a)

long long __fracthqti (fract a)

float __fracthqgsf (fract a)

double __fracthqdf (fract a)

short fract __fractsqqq2 (long fract a)

fract __fractsqhq2 (long fract a)

long long fract __fractsqdq2 (long fract a)
short accum __fractsqgha (long fract a)

accum __fractsqgsa (long fract a)

long accum __fractsqda (long fract a)

long long accum __fractsqta (long fract a)
unsigned short fract __fractsquqq (long fract a)
unsigned fract __fractsquhq (long fract a)
unsigned long fract __fractsqusq (long fract a)
unsigned long long fract __fractsqudq (long fract a)

unsigned short accum __fractsquha (long fract a)

fract a)

31

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



32 GNU Compiler Collection (GCC) Internals

_fractsqusa (long fract a)

_fractsquda (long fract a)

unsigned long long accum __fractsquta (long fract a)

signed char __fractsqqi (long fract a)

short __fractsqhi (long fract a)

int __fractsqgsi (long fract a)

long __fractsqdi (long fract a)

long long __fractsqti (long fract a)

float __fractsqsf (long fract a)

double __fractsqdf (long fract a)

short fract __fractdqqq2 (long long fract a)

fract __fractdqhq2 (long long fract a)

long fract __fractdgsq2 (long long fract a)

short accum __fractdgha (long long fract a)

accum __fractdgsa (long long fract a)

long accum __fractdqda (long long fract a)

long long accum __fractdqta (long long fract a)

unsigned short fract __fractdquqq (long long fract a)

unsigned fract __fractdquhq (long long fract a)

unsigned long fract __fractdqusq (long long fract a)

unsigned long long fract __fractdqudq (long long fract
)

unsigned short accum __fractdquha (long long fract a)

unsigned accum __fractdqusa (long long fract a)

unsigned long accum __fractdquda (long long fract a)

unsigned long long accum __fractdquta (long long fract
)

signed char __fractdqqi (long long fract a)

short __fractdghi (long long fract a)

int __fractdqgsi (long long fract a)

long __fractdqdi (long long fract a)

long long __fractdqti (long long fract a)

float __fractdqgsf (long long fract a)

double __fractdqdf (long long fract a)

short fract __fracthaqq (short accum a)

fract __fracthahq (short accum a)

long fract __fracthasq (short accum a)

long long fract __fracthadq (short accum a)

accum __fracthasa2 (short accum a)

long accum __fracthada2 (short accum a)

long long accum __fracthata2 (short accum a)

unsigned short fract __fracthauqq (short accum a)

unsigned fract __fracthauhq (short accum a)

unsigned long fract __fracthausq (short accum a)

unsigned long long fract __fracthaudq (short accum a)

unsigned short accum __fracthauha (short accum a)

unsigned accum __fracthausa (short accum a)

unsigned accum _
unsigned long accum _

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



Chapter 4: The GCC low-level runtime library

unsigned long accum __fracthauda (short accum a)
unsigned long long accum __fracthauta (short accum a)
signed char __fracthaqi (short accum a)

short __fracthahi (short accum a)

int __fracthasi (short accum a)

long __fracthadi (short accum a)

long long __fracthati (short accum a)

float __fracthasf (short accum a)

double __fracthadf (short accum a)

short fract __fractsaqq (accum a)

fract __fractsahq (accum a)

long fract __fractsasq (accum a)

long long fract __fractsadq (accum a)

short accum __fractsaha2 (accum a)

long accum __fractsada2 (accum a)

long long accum __fractsata2 (accum a)
unsigned short fract __fractsauqq (accum a)
unsigned fract __fractsauhq (accum a)

unsigned long fract __fractsausq (accum a)
unsigned long long fract __fractsaudq (accum a)
unsigned short accum __fractsauha (accum a)
unsigned accum __fractsausa (accum a)

unsigned long accum __fractsauda (accum a)
unsigned long long accum __fractsauta (accum a)
signed char __fractsaqi (accum a)

short __fractsahi (accum a)

int __fractsasi (accum a)

long __fractsadi (accum a)

long long __fractsati (accum a)

float __fractsasf (accum a)

double __fractsadf (accum a)

short fract __fractdaqq (long accum a)

fract __fractdahq (long accum a)

long fract __fractdasq (long accum a)

long long fract __fractdadq (long accum a)

short accum __fractdaha2 (long accum a)

accum __fractdasa2 (long accum a)

long long accum __fractdata2 (long accum a)
unsigned short fract __fractdauqq (long accum a)
unsigned fract __fractdauhq (long accum a)
unsigned long fract __fractdausq (long accum a)
unsigned long long fract __fractdaudq (long accum a)
unsigned short accum __fractdauha (long accum a)
unsigned accum __fractdausa (long accum a)
unsigned long accum __fractdauda (long accum a)
unsigned long long accum __fractdauta (long accum a)
signed char __fractdaqi (long accum a)

33

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



34 GNU Compiler Collection (GCC) Internals

short __fractdahi (long accum a)

int __fractdasi (long accum a)

long __fractdadi (long accum a)

long long __fractdati (long accum a)

float __fractdasf (long accum a)

double __fractdadf (long accum a)

short fract __fracttaqq (long long accum a)

fract __fracttahq (long long accum a)

long fract __fracttasq (long long accum a)

long long fract __fracttadq (long long accum a)

short accum __fracttaha2 (long long accum a)

accum __fracttasa2 (long long accum a)

long accum __fracttada2 (long long accum a)

unsigned short fract __fracttauqq (long long accum a)

unsigned fract __fracttauhq (long long accum a)

unsigned long fract __fracttausq (long long accum a)

unsigned long long fract __fracttaudq (long long accum
)

unsigned short accum __fracttauha (long long accum a)

unsigned accum __fracttausa (long long accum a)

unsigned long accum __fracttauda (long long accum a)

unsigned long long accum __fracttauta (long long accum
)

signed char __fracttaqi (long long accum a)

short __fracttahi (long long accum a)

int __fracttasi (long long accum a)

long __fracttadi (long long accum a)

long long __fracttati (long long accum a)

float __fracttasf (long long accum a)

double __fracttadf (long long accum a)

short fract __fractuqqqq (unsigned short fract a)

fract __fractuqqghq (unsigned short fract a)

long fract __fractuqqgsq (unsigned short fract a)

long long fract __fractuqqdq (unsigned short fract a)

short accum __fractuqgha (unsigned short fract a)

accum __fractuqqgsa (unsigned short fract a)

long accum __fractuqqda (unsigned short fract a)

long long accum __fractuqqta (unsigned short fract a)

unsigned fract __fractuqquhq2 (unsigned short fract a)

unsigned long fract __fractuqqusq2 (unsigned short fract
a)

unsigned long long fract __fractuqqudq2 (unsigned
short fract a)

unsigned short accum
a)

unsigned accum

_fractuqquha (unsigned short fract

_fractuqqusa (unsigned short fract a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]



Chapter 4: The GCC low-level runtime library

unsigned long accum __fractuqquda (unsigned short fract
a)

unsigned long long accum
fract a)

signed char __fractuqqqi (unsigned short fract a)

short __fractuqqghi (unsigned short fract a)

int __fractuqqgsi (unsigned short fract a)

long __fractuqqdi (unsigned short fract a)

long long __fractuqqti (unsigned short fract a)

float __fractuqqsf (unsigned short fract a)

double __fractuqqdf (unsigned short fract a)

short fract __fractuhqqq (unsigned fract a)

_fractuqquta (unsigned short

fract __fractuhghq (unsigned fract a)

long fract __fractuhqgsq (unsigned fract a)

long long fract __fractuhqdq (unsigned fract a)

short accum __fractuhgha (unsigned fract a)

accum __fractuhqgsa (unsigned fract a)

long accum __fractuhqda (unsigned fract a)

long long accum __fractuhqta (unsigned fract a)

unsigned short fract __fractuhquqq?2 (unsigned fract a)

unsigned long fract __fractuhqusq2 (unsigned fract a)

unsigned long long fract __fractuhqudq2 (unsigned
fract a)

unsigned short accum __fractuhquha (unsigned fract a)

unsigned accum __fractuhqusa (unsigned fract a)

unsigned long accum __fractuhquda (unsigned fract a)

unsigned long long accum __fractuhquta (unsigned fract
)

signed char __fractuhqqi (unsigned fract a)

short __fractuhqhi (unsigned fract a)

int __fractuhqgsi (unsigned fract a)

long __fractuhqdi (unsigned fract a)

long long __fractuhqti (unsigned fract a)

float __fractuhqsf (unsigned fract a)

double __fractuhqdf (unsigned fract a)

short fract __fractusqqq (unsigned long fract a)

fract __fractusqhq (unsigned long fract a)

long fract __fractusqsq (unsigned long fract a)

long long fract __fractusqdq (unsigned long fract a)

short accum __fractusgha (unsigned long fract a)

accum __fractusqgsa (unsigned long fract a)

long accum __fractusqda (unsigned long fract a)

long long accum __fractusqta (unsigned long fract a)

unsigned short fract __fractusquqq2 (unsigned long fract
a)

unsigned fract

_fractusquhq2 (unsigned long fract a)

35

[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]



36 GNU Compiler Collection (GCC) Internals

unsigned long long fract __fractusqudq2 (unsigned long
fract a)

unsigned short accum
)

unsigned accum __fractusqusa (unsigned long fract a)

unsigned long accum __fractusquda (unsigned long fract a)

unsigned long long accum __fractusquta (unsigned long
fract a)

signed char __fractusqqi (unsigned long fract a)

short __fractusqhi (unsigned long fract a)

int __fractusqsi (unsigned long fract a)

long __fractusqdi (unsigned long fract a)

long long __fractusqti (unsigned long fract a)

float __fractusqsf (unsigned long fract a)

double __fractusqdf (unsigned long fract a)

short fract __fractudqqq (unsigned long long fract a)

fract __fractudghq (unsigned long long fract a)

long fract __fractudqgsq (unsigned long long fract a)

long long fract __fractudqdq (unsigned long long fract a)

short accum __fractudgha (unsigned long long fract a)

accum __fractudqgsa (unsigned long long fract a)

long accum __fractudqda (unsigned long long fract a)

long long accum __fractudqta (unsigned long long fract a)

unsigned short fract __fractudquqq2 (unsigned long long
fract a)

unsigned fract __fractudquhq2 (unsigned long long fract a)

unsigned long fract __fractudqusq2 (unsigned long long
fract a)

unsigned short accum
fract a)

unsigned accum __fractudqusa (unsigned long long fract a)

unsigned long accum __fractudquda (unsigned long long
fract a)

unsigned long long accum __fractudquta (unsigned long
long fract a)

signed char __fractudqqi (unsigned long long fract a)

short __fractudqhi (unsigned long long fract a)

int __fractudqsi (unsigned long long fract a)

long __fractudqdi (unsigned long long fract a)

long long __fractudqti (unsigned long long fract a)

float __fractudqgsf (unsigned long long fract a)

double __fractudqdf (unsigned long long fract a)

short fract __fractuhaqq (unsigned short accum a)

fract __fractuhahq (unsigned short accum a)

long fract __fractuhasq (unsigned short accum a)

long long fract __fractuhadq (unsigned short accum a)

short accum __fractuhaha (unsigned short accum a)

_fractusquha (unsigned long fract

_fractudquha (unsigned long long

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



Chapter 4: The GCC low-level runtime library

accum __fractuhasa (unsigned short accum a)

long accum __fractuhada (unsigned short accum a)

long long accum __fractuhata (unsigned short accum a)

unsigned short fract __fractuhauqq (unsigned short
accum a)

unsigned fract __fractuhauhq (unsigned short accum a)

unsigned long fract __fractuhausq (unsigned short accum
)

unsigned long long fract __fractuhaudq (unsigned short
accum a)

unsigned accum

unsigned long accum
accum a)

unsigned long long accum
short accum a)

signed char __fractuhaqi (unsigned short accum a)

short __fractuhahi (unsigned short accum a)

int __fractuhasi (unsigned short accum a)

long __fractuhadi (unsigned short accum a)

long long __fractuhati (unsigned short accum a)

float __fractuhasf (unsigned short accum a)

double __fractuhadf (unsigned short accum a)

short fract __fractusaqq (unsigned accum a)

fract __fractusahq (unsigned accum a)

long fract __fractusasq (unsigned accum a)

long long fract __fractusadq (unsigned accum a)

short accum __fractusaha (unsigned accum a)

accum __fractusasa (unsigned accum a)

long accum __fractusada (unsigned accum a)

long long accum __fractusata (unsigned accum a)

unsigned short fract __fractusauqq (unsigned accum a)

unsigned fract __fractusauhq (unsigned accum a)

unsigned long fract __fractusausq (unsigned accum a)

unsigned long long fract __fractusaudq (unsigned
accum a)

unsigned short accum __fractusauha2 (unsigned accum a)

unsigned long accum __fractusauda2 (unsigned accum a)

unsigned long long accum __fractusauta2 (unsigned
accum a)

signed char __fractusaqi (unsigned accum a)

short __fractusahi (unsigned accum a)

int __fractusasi (unsigned accum a)

long __fractusadi (unsigned accum a)

long long __fractusati (unsigned accum a)

float __fractusasf (unsigned accum a)

double __fractusadf (unsigned accum a)

short fract __fractudaqq (unsigned long accum a)

__fractuhausa2 (unsigned short accum a)
_fractuhauda2 (unsigned short

_fractuhauta2 (unsigned

37

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



38 GNU Compiler Collection (GCC) Internals

fract __fractudahq (unsigned long accum a)

long fract __fractudasq (unsigned long accum a)

long long fract __fractudadq (unsigned long accum a)

short accum __fractudaha (unsigned long accum a)

accum __fractudasa (unsigned long accum a)

long accum __fractudada (unsigned long accum a)

long long accum __fractudata (unsigned long accum a)

unsigned short fract __fractudauqq (unsigned long
accum a)

unsigned fract __fractudauhq (unsigned long accum a)

unsigned long fract __fractudausq (unsigned long accum

a)

unsigned long long fract __fractudaudq (unsigned long
accum a)

unsigned short accum __fractudauha?2 (unsigned long
accum a)

unsigned accum __fractudausa2 (unsigned long accum a)

unsigned long long accum __fractudauta2 (unsigned long
accum a)

signed char __fractudaqi (unsigned long accum a)

short __fractudahi (unsigned long accum a)

int __fractudasi (unsigned long accum a)

long __fractudadi (unsigned long accum a)

long long __fractudati (unsigned long accum a)

float __fractudasf (unsigned long accum a)

double __fractudadf (unsigned long accum a)

short fract __fractutaqq (unsigned long long accum a)

fract __fractutahq (unsigned long long accum a)

long fract __fractutasq (unsigned long long accum a)

long long fract __fractutadq (unsigned long long accum a)

short accum __fractutaha (unsigned long long accum a)

accum __fractutasa (unsigned long long accum a)

long accum __fractutada (unsigned long long accum a)

long long accum __fractutata (unsigned long long accum a)

unsigned short fract __fractutauqq (unsigned long long
accum a)

unsigned fract __fractutauhq (unsigned long long accum a)

unsigned long fract __fractutausq (unsigned long long
accum a)

unsigned long long fract
long accum a)

unsigned short accum
accum a)

unsigned accum
a)

unsigned long accum
accum a)

_fractutaudq (unsigned long

__fractutauha? (unsigned long long

_fractutausa2 (unsigned long long accum

_fractutauda2 (unsigned long long

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]



Chapter 4: The GCC low-level runtime library

signed char __fractutaqi (unsigned long long accum a)
short __fractutahi (unsigned long long accum a)
int __fractutasi (unsigned long long accum a)
long __fractutadi (unsigned long long accum a)
long long __fractutati (unsigned long long accum a)
float __fractutasf (unsigned long long accum a)
double __fractutadf (unsigned long long accum a)
short fract __fractqiqq (signed char a)

fract __fractqihq (signed char a)

long fract __fractqisq (signed char a)

long long fract __fractqidq (signed char a)
short accum __fractqiha (signed char a)

accum __fractqisa (signed char a)

long accum __fractqida (signed char a)

long long accum __fractqita (signed char a)
unsigned short fract __fractqiuqq (signed char a)
unsigned fract __fractqiuhq (signed char a)
unsigned long fract __fractqiusq (signed char a)
unsigned long long fract __fractqiudq (signed char a)
unsigned short accum __fractqiuha (signed char a)
unsigned accum __fractqiusa (signed char a)
unsigned long accum __fractqiuda (signed char a)
unsigned long long accum __fractqiuta (signed char a)
short fract __fracthiqq (short a)

fract __fracthihq (short a)

long fract __fracthisq (short a)

long long fract __fracthidq (short a)

short accum __fracthiha (short a)

accum __fracthisa (short a)

long accum __fracthida (short a)

long long accum __fracthita (short a)

unsigned short fract __fracthiuqq (short a)
unsigned fract __fracthiuhq (short a)

unsigned long fract __fracthiusq (short a)
unsigned long long fract __fracthiudq (short a)
unsigned short accum __fracthiuha (short a)
unsigned accum __fracthiusa (short a)

unsigned long accum __fracthiuda (short a)
unsigned long long accum __fracthiuta (short a)
short fract __fractsiqq (int a)

fract __fractsihq (int a)

long fract __fractsisq (int a)

long long fract __fractsidq (int a)

short accum __fractsiha (int a)

accum __fractsisa (int a)

long accum __fractsida (int a)

long long accum __fractsita (int a)

39

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



40

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

GNU Compiler Collection (GCC) Internals

short fract __fractsiuqq (int a)
fract __fractsiuhq (int a)

long fract __fractsiusq (int a)

long long fract __fractsiudq (int a)
short accum __fractsiuha (int a)
accum __fractsiusa (int a)

long accum __fractsiuda (int a)

long long accum __fractsiuta (int a)

short fract __fractdiqq (long a)
fract __fractdihq (long a)

long fract
long long fract
short accum

__fractdisq (long a)
__fractdidq (long a)
fractdiha (long a)

accum __fractdisa (long a)

long accum
long long accum

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

__fractdida (long a)
__fractdita (long a)

short fract __fractdiuqq (long a)
fract __fractdiuhq (long a)

long fract __fractdiusq (long a)

long long fract __fractdiudq (long a)
short accum __fractdiuha (long a)
accum __fractdiusa (long a)

long accum __fractdiuda (long a)

long long accum __fractdiuta (long a)

short fract __fracttiqq (long long a)

fract

_fracttihq (long long a)

long fract __fracttisq (long long a)

long long fract
short accum
__fracttisa (long long a)
long accum
long long accum

accum

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

__fracttidq (long long a)
__fracttiha (long long a)
_fracttida (long long a)
__fracttita (long long a)

short fract __fracttiuqq (long long a)
fract __fracttiuhq (long long a)

long fract __fracttiusq (long long a)

long long fract __fracttiudq (long long a)
short accum __fracttiuha (long long a)
accum __fracttiusa (long long a)

long accum __fracttiuda (long long a)

long long accum __fracttiuta (long long a)

short fract __fractsfqq (float a)
fract __fractsfhq (float a)

long fract
long long fract
short accum
_fractsfsa (float a)

accum

long accum

_fractsfsq (float a)
__fractsfdq (float a)
__fractsfha (float a)

_fractsfda (float a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



Chapter 4: The GCC low-level runtime library

long long accum __fractsfta (float a)

unsigned short fract __fractsfuqq (float a)
unsigned fract __fractsfuhq (float a)

unsigned long fract __fractsfusq (foat a)
unsigned long long fract __fractsfudq (float a)
unsigned short accum __fractsfuha (float a)
unsigned accum __fractsfusa (float a)

unsigned long accum __fractsfuda (float a)
unsigned long long accum __fractsfuta (float a)
short fract __fractdfqq (double a)

fract __fractdfhq (double a)

long fract __fractdfsq (double a)

long long fract __fractdfdq (double a)

short accum __fractdfha (double a)

accum __fractdfsa (double a)

long accum __fractdfda (double a)

long long accum __fractdfta (double a)

unsigned short fract __fractdfuqq (double a)
unsigned fract __fractdfuhq (double a)

unsigned long fract __fractdfusq (double a)
unsigned long long fract __fractdfudq (double a)
unsigned short accum __fractdfuha (double a)
unsigned accum __fractdfusa (double a)

unsigned long accum __fractdfuda (double a)
unsigned long long accum __fractdfuta (double a)

41

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

These functions convert from fractional and signed non-fractionals to fractionals and

signed non-fractionals, without saturation.

fract __satfractqqhq2 (short fract a)

long fract __satfractqqsq2 (short fract a)

long long fract __satfractqqdq2 (short fract a)

short accum __satfractqgha (short fract a)

accum __satfractqqgsa (short fract a)

long accum __satfractqqda (short fract a)

long long accum __satfractqqta (short fract a)

unsigned short fract __satfractqquqq (short fract a)

unsigned fract __satfractqquhq (short fract a)

unsigned long fract __satfractqqusq (short fract a)

unsigned long long fract __satfractqqudq (short fract
)

unsigned short accum

unsigned accum _

unsigned long accum __

unsigned long long accum
)

short fract __satfracthqqq2 (fract a)

long fract __satfracthqsq2 (fract a)

__satfractqquha (short fract a)
_satfractqqusa (short fract a)
satfractqquda (short fract a)
satfractqquta (short fract

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]



42 GNU Compiler Collection (GCC) Internals

long long fract __satfracthqdq2 (fract a)

short accum __satfracthgha (fract a)

accum __satfracthqgsa (fract a)

long accum __satfracthqda (fract a)

long long accum __satfracthqta (fract a)

unsigned short fract __satfracthquqq (

unsigned fract __satfracthquhq (fract a)

unsigned long fract __satfracthqusq (fract a)

unsigned long long fract __satfracthqudq (fract a)

unsigned short accum __satfracthquha (fract a)

unsigned accum __satfracthqusa (fract a)

unsigned long accum __satfracthquda (fract a)

unsigned long long accum __satfracthquta (fract a)

short fract __satfractsqqq2 (long fract a)

fract __satfractsqhq2 (long fract a)

long long fract __satfractsqdq2 (long fract a)

short accum __satfractsqha (long fract a)

accum __satfractsqsa (long fract a)

long accum __satfractsqda (long fract a)

long long accum __satfractsqta (long fract a)

unsigned short fract __satfractsquqq (long fract a)

unsigned fract __satfractsquhq (long fract a)

unsigned long fract __satfractsqusq (long fract a)

unsigned long long fract __satfractsqudq (long fract a)

unsigned short accum __satfractsquha (long fract a)

unsigned accum __satfractsqusa (long fract a)

unsigned long accum __satfractsquda (long fract a)

unsigned long long accum __satfractsquta (long fract a)

short fract __satfractdqqq2 (long long fract a)

fract __satfractdqhq2 (long long fract a)

long fract __satfractdqsq2 (long long fract a)

short accum __satfractdgha (long long fract a)

accum __satfractdqgsa (long long fract a)

long accum __satfractdqda (long long fract a)

long long accum __satfractdqta (long long fract a)

unsigned short fract __satfractdquqq (long long fract a)

unsigned fract __satfractdquhq (long long fract a)

unsigned long fract __satfractdqusq (long long fract a)

unsigned long long fract __satfractdqudq (long long
fract a)

unsigned short accum __satfractdquha (long long fract a)

unsigned accum __satfractdqusa (long long fract a)

unsigned long accum __satfractdquda (long long fract a)

unsigned long long accum __satfractdquta (long long

fract a)

fract a)
short fract __satfracthaqq (short accum a)
fract __satfracthahq (short accum a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function

[ ]
[ ]
[ ]
[ ]

[Runtime Function]
[Runtime Function]



Chapter 4: The GCC low-level runtime library

long fract __satfracthasq (short accum a)
long long fract __satfracthadq (short accum a)
accum __satfracthasa2 (short accum a)
long accum __satfracthada?2 (short accum a)
long long accum __satfracthata2 (short accum a)
unsigned short fract __satfracthauqq (short accum a)
unsigned fract __satfracthauhq (short accum a)
unsigned long fract __satfracthausq (short accum a)
unsigned long long fract __satfracthaudq (short accum
a)
unsigned short accum __satfracthauha (short accum a)
unsigned accum __satfracthausa (short accum a)
unsigned long accum __satfracthauda (short accum a)
unsigned long long accum __satfracthauta (short accum

a)
short fract __satfractsaqq (accum a)
fract __satfractsahq (accum a)
long fract __satfractsasq (accum a)

long long fract __satfractsadq (accum a)

short accum __satfractsaha2 (accum a)

long accum __satfractsada2 (accum a)

long long accum __satfractsata2 (accum a)

unsigned short fract __satfractsauqq (accum a)

unsigned fract __satfractsauhq (accum a)

unsigned long fract __satfractsausq (accum a)

unsigned long long fract __satfractsaudq (accum a)

unsigned short accum __satfractsauha (accum a)

unsigned accum __satfractsausa (accum a)

unsigned long accum __satfractsauda (accum a)

unsigned long long accum __satfractsauta (accum a)

short fract __satfractdaqq (long accum a)

fract __satfractdahq (long accum a)

long fract __satfractdasq (long accum a)

long long fract __satfractdadq (long accum a)

short accum __satfractdaha2 (long accum a)

accum __satfractdasa2 (long accum a)

long long accum __satfractdata2 (long accum a)

unsigned short fract __satfractdauqq (long accum a)

unsigned fract __satfractdauhq (long accum a)

unsigned long fract __satfractdausq (long accum a)

unsigned long long fract __satfractdaudq (long accum
)

unsigned short accum __satfractdauha (long accum a)

unsigned accum __satfractdausa (long accum a)

unsigned long accum __satfractdauda (long accum a)

unsigned long long accum __satfractdauta (long accum

a)

43

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]
Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



44 GNU Compiler Collection (GCC) Internals

short fract __satfracttaqq (long long accum a)

fract __satfracttahq (long long accum a)

long fract __satfracttasq (long long accum a)

long long fract __satfracttadq (long long accum a)

short accum __satfracttaha2 (long long accum a)

accum __satfracttasa2 (long long accum a)

long accum __satfracttada2 (long long accum a)

unsigned short fract __satfracttauqq (long long accum
)

unsigned fract __satfracttauhq (long long accum a)

unsigned long fract __satfracttausq (long long accum a)

unsigned long long fract __satfracttaudq (long long
accum a)

unsigned short accum
a)

unsigned accum __satfracttausa (long long accum a)

unsigned long accum __satfracttauda (long long accum a)

unsigned long long accum __satfracttauta (long long
accum a)

short fract __satfractuqqqq (unsigned short fract a)

fract __satfractuqqhq (unsigned short fract a)

long fract __satfractuqqsq (unsigned short fract a)

long long fract __satfractuqqdq (unsigned short fract a)

short accum __satfractuqqgha (unsigned short fract a)

accum __satfractuqqgsa (unsigned short fract a)

long accum __satfractuqqda (unsigned short fract a)

long long accum __satfractuqqta (unsigned short fract a)

unsigned fract __satfractuqquhq?2 (unsigned short fract a)

unsigned long fract __satfractuqqusq2 (unsigned short
fract a)

unsigned long long fract
short fract a)

unsigned short accum
fract a)

unsigned accum __satfractuqqusa (unsigned short fract a)

unsigned long accum __satfractuqquda (unsigned short
fract a)

unsigned long long accum
short fract a)

short fract __satfractuhqqq (unsigned fract a)

fract __satfractuhqhq (unsigned fract a)

long fract __satfractuhqsq (unsigned fract a)

long long fract __satfractuhqdq (unsigned fract a)

short accum __satfractuhqgha (unsigned fract a)

accum __satfractuhqgsa (unsigned fract a)

long accum __satfractuhqda (unsigned fract a)

long long accum __satfractuhqta (unsigned fract a)

_satfracttauha (long long accum

_satfractuqqudq?2 (unsigned

_satfractuqquha (unsigned short

__satfractuqquta (unsigned

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



Chapter 4: The GCC low-level runtime library

unsigned short fract
a)

unsigned long fract
)

unsigned long long fract
fract a)

unsigned short accum
)

unsigned accum __satfractuhqusa (unsigned fract a)

unsigned long accum __satfractuhquda (unsigned fract a)

unsigned long long accum __satfractuhquta (unsigned
fract a)

short fract __satfractusqqq (unsigned long fract a)

fract __satfractusqhq (unsigned long fract a)

long fract __satfractusqsq (unsigned long fract a)

long long fract __satfractusqdq (unsigned long fract a)

short accum __satfractusqgha (unsigned long fract a)

accum __satfractusqsa (unsigned long fract a)

long accum __satfractusqda (unsigned long fract a)

long long accum __satfractusqta (unsigned long fract a)

unsigned short fract __satfractusquqq2 (unsigned long
fract a)

unsigned fract __satfractusquhq2 (unsigned long fract a)

unsigned long long fract __satfractusqudq2 (unsigned
long fract a)

unsigned short accum
fract a)

unsigned accum __satfractusqusa (unsigned long fract a)

unsigned long accum __satfractusquda (unsigned long
fract a)

unsigned long long accum
long fract a)

short fract __satfractudqqq (unsigned long long fract a)

fract __satfractudqhq (unsigned long long fract a)

long fract __satfractudqsq (unsigned long long fract a)

long long fract __satfractudqdq (unsigned long long fract
2)

short accum __satfractudgha (unsigned long long fract a)

accum __satfractudqgsa (unsigned long long fract a)

long accum __satfractudqda (unsigned long long fract a)

long long accum __satfractudqta (unsigned long long fract
2)

unsigned short fract
long fract a)

unsigned fract __satfractudquhq2 (unsigned long long
fract a)

_satfractuhquqq?2 (unsigned fract

__satfractuhqusq2 (unsigned fract

_satfractuhqudq?2 (unsigned

_satfractuhquha (unsigned fract

_satfractusquha (unsigned long

_satfractusquta (unsigned

_satfractudquqq2 (unsigned long

45

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]



46 GNU Compiler Collection (GCC) Internals

unsigned long fract __satfractudqusq2 (unsigned long
long fract a)

unsigned short accum
long fract a)

unsigned accum __satfractudqusa (unsigned long long fract
a)

unsigned long accum
long fract a)

unsigned long long accum
long long fract a)

short fract __satfractuhaqq (unsigned short accum a)

fract __satfractuhahq (unsigned short accum a)

long fract __satfractuhasq (unsigned short accum a)

long long fract __satfractuhadq (unsigned short accum a)

short accum __satfractuhaha (unsigned short accum a)

accum __satfractuhasa (unsigned short accum a)

long accum __satfractuhada (unsigned short accum a)

long long accum __satfractuhata (unsigned short accum a)

unsigned short fract __satfractuhauqq (unsigned short
accum a)

unsigned fract __satfractuhauhq (unsigned short accum a)

unsigned long fract __satfractuhausq (unsigned short
accum a)

unsigned long long fract
short accum a)

unsigned accum __satfractuhausa2 (unsigned short accum
a)

unsigned long accum
accum a)

unsigned long long accum
short accum a)

short fract __satfractusaqq (unsigned accum a)

fract __satfractusahq (unsigned accum a)

long fract __satfractusasq (unsigned accum a)

long long fract __satfractusadq (unsigned accum a)

short accum __satfractusaha (unsigned accum a)

accum __satfractusasa (unsigned accum a)

long accum __satfractusada (unsigned accum a)

long long accum __satfractusata (unsigned accum a)

unsigned short fract __satfractusauqq (unsigned accum
a)

unsigned fract __satfractusauhq (unsigned accum a)

unsigned long fract __satfractusausq (unsigned accum
a)

unsigned long long fract
accum a)

__satfractudquha (unsigned long

_satfractudquda (unsigned long

_satfractudquta (unsigned

__satfractuhaudq (unsigned

_satfractuhauda?2 (unsigned short

__satfractuhauta2 (unsigned

__satfractusaudq (unsigned

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]



Chapter 4: The GCC low-level runtime library

unsigned short accum __satfractusauha2 (unsigned

accum a)

unsigned long accum __satfractusauda2 (unsigned accum
a)

unsigned long long accum __satfractusauta2 (unsigned
accum a)

short fract __satfractudaqq (unsigned long accum a)

fract __satfractudahq (unsigned long accum a)

long fract __satfractudasq (unsigned long accum a)

long long fract __satfractudadq (unsigned long accum a)

short accum __satfractudaha (unsigned long accum a)

accum __satfractudasa (unsigned long accum a)

long accum __satfractudada (unsigned long accum a)

long long accum __satfractudata (unsigned long accum a)

unsigned short fract __satfractudauqq (unsigned long
accum a)

unsigned fract __satfractudauhq (unsigned long accum a)

unsigned long fract __satfractudausq (unsigned long
accum a)

unsigned long long fract
long accum a)

unsigned short accum
accum a)

unsigned accum
a)

unsigned long long accum
long accum a)

short fract __satfractutaqq (unsigned long long accum a)

fract __satfractutahq (unsigned long long accum a)

long fract __satfractutasq (unsigned long long accum a)

long long fract __satfractutadq (unsigned long long
accum a)

short accum __satfractutaha (unsigned long long accum a)

accum __satfractutasa (unsigned long long accum a)

long accum __satfractutada (unsigned long long accum a)

long long accum __satfractutata (unsigned long long
accum a)

unsigned short fract
long accum a)

unsigned fract __satfractutauhq (unsigned long long
accum a)

unsigned long fract
long accum a)

unsigned long long fract
long long accum a)

unsigned short accum __satfractutauha2 (unsigned long
long accum a)

_satfractudaudq (unsigned

_satfractudauha2 (unsigned long

_satfractudausa2 (unsigned long accum

_satfractudauta2 (unsigned

__satfractutauqq (unsigned long
__satfractutausq (unsigned long

_satfractutaudq (unsigned

47

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[ ]

Runtime Function

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]



48 GNU Compiler Collection (GCC) Internals

unsigned accum
accum a)

unsigned long accum
long accum a)

short fract __satfractqiqq (signed char a)

fract __satfractqihq (signed char a)

long fract __satfractqisq (signed char a)

long long fract __satfractqidq (signed char a)

short accum __satfractqiha (signed char a)

accum __satfractqisa (signed char a)

long accum __satfractqida (signed char a)

long long accum __satfractqita (signed char a)

unsigned short fract __satfractqiuqq (signed char a)

unsigned fract __satfractqiuhq (signed char a)

unsigned long fract __satfractqiusq (signed char a)

unsigned long long fract __satfractqiudq (signed char
)

unsigned short accum __satfractqiuha (signed char a)

unsigned accum __satfractqiusa (signed char a)

unsigned long accum __satfractqiuda (signed char a)

unsigned long long accum __satfractqiuta (signed char

_satfractutausa2 (unsigned long long

_satfractutauda2 (unsigned long

a)
short fract __satfracthiqq (short a)
fract __satfracthihq (short a)
long fract __satfracthisq (short a)

long long fract __satfracthidq (short a)

short accum __satfracthiha (short a)

accum __satfracthisa (short a)

long accum __satfracthida (short a)

long long accum __satfracthita (short a)
unsigned short fract __satfracthiuqq (short a)
unsigned fract __satfracthiuhq (short a)
unsigned long fract __satfracthiusq (short a)
unsigned long long fract __satfracthiudq (short a)
unsigned short accum __satfracthiuha (short a)
unsigned accum __satfracthiusa (short a)
unsigned long accum __satfracthiuda (short a)
unsigned long long accum __satfracthiuta (short a)
short fract __satfractsiqq (int a)

fract __satfractsihq (int a)

long fract __satfractsisq (int a)

long long fract __satfractsidq (int a)

short accum __satfractsiha (int a)

accum __satfractsisa (int a)

long accum __satfractsida (int a)

long long accum __satfractsita (int a)
unsigned short fract __satfractsiuqq (int a)

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



Chapter 4: The GCC low-level runtime library

unsigned fract __satfractsiuhq (int a)

unsigned long fract __satfractsiusq (int a)
unsigned long long fract __satfractsiudq (int a)
unsigned short accum __satfractsiuha (int a)
unsigned accum __satfractsiusa (int a)

unsigned long accum __satfractsiuda (int a)
unsigned long long accum __satfractsiuta (int a)
short fract __satfractdiqq (long a)

fract __satfractdihq (long a)

long fract __satfractdisq (long a)

long long fract __satfractdidq (long a)

short accum __satfractdiha (long a)

accum __satfractdisa (long a)

long accum __satfractdida (long a)

long long accum __satfractdita (long a)

unsigned short fract __satfractdiuqq (long a)
unsigned fract __satfractdiuhq (long a)

unsigned long fract __satfractdiusq (long a)
unsigned long long fract __satfractdiudq (long a)
unsigned short accum __satfractdiuha (long a)
unsigned accum __satfractdiusa (long a)

unsigned long accum __satfractdiuda (long a)
unsigned long long accum __satfractdiuta (long a)
short fract __satfracttiqq (long long a)

fract __satfracttihq (long long a)

long fract __satfracttisq (long long a)

long long fract __satfracttidq (long long a)
short accum __satfracttiha (long long a)
accum __satfracttisa (long long a)

long accum __satfracttida (long long a)

long long accum __satfracttita (long long a)

unsigned short fract __satfracttiuqq (long long a)
unsigned fract __satfracttiuhq (long long a)

unsigned long fract __satfracttiusq (long long a)
unsigned long long fract __satfracttiudq (long long a)
unsigned short accum __satfracttiuha (long long a)
unsigned accum __satfracttiusa (long long a)

unsigned long accum __satfracttiuda (long long a)
unsigned long long accum __satfracttiuta (long long a)
short fract __satfractsfqq (float a)

fract __satfractsfhq (float a)

long fract __satfractsfsq (float a)

long long fract __satfractsfdq (float a)

short accum __satfractsfha (float a)

accum __satfractsfsa (float a)

long accum __satfractsfda (float a)

long long accum __satfractsfta (float a)

49

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



50

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

short fract
_satfractdfhq (double a)

fract

long fract __
long long fract
short accum
satfractdfsa (double a)

accum

long accum __
long long accum

GNU Compiler Collection (GCC) Internals

short fract __satfractsfuqq (float a)

fract __satfractsfuhq (float a)

long fract __satfractsfusq (foat a)

long long fract __satfractsfudq (float a)

short accum __satfractsfuha (float a)

accum __satfractsfusa (float a)

long accum __satfractsfuda (foat a)

long long accum __satfractsfuta (float a)
__satfractdfqq (double a)

satfractdfsq (double a)

__satfractdfdq (double a)

__satfractdfha (double a)

satfractdfda (double a)
satfractdfta (double a)

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

unsigned short fract __satfractdfuqq (double a)

unsigned fract __satfractdfuhq (double a)

unsigned long fract __satfractdfusq (double a)

unsigned long long fract __satfractdfudq (double a)

unsigned short accum __satfractdfuha (double a)

unsigned accum __satfractdfusa (double a)

unsigned long accum __satfractdfuda (double a)

unsigned long long accum __satfractdfuta (double a)
The functions convert from fractional and signed non-fractionals to fractionals, with
saturation.

unsigned char __fractunsqqqi (short fract a)

unsigned short __fractunsqghi (short fract a)

unsigned int __fractunsqqgsi (short fract a)

unsigned long __fractunsqqdi (short fract a)

unsigned long long __fractunsqqti (short fract a)

unsigned char __fractunshqqi (fract a)

unsigned short __fractunshqghi (fract a)

unsigned int __fractunshqsi (fract a)

unsigned long __fractunshqdi (fract a)

unsigned long long __fractunshqti (fract a)

unsigned char __fractunssqqi (long fract a)

unsigned short __fractunssqghi (long fract a)

unsigned int __fractunssqsi (long fract a)

unsigned long __fractunssqdi (long fract a)

unsigned long long __fractunssqti (long fract a)

unsigned char __fractunsdqqi (long long fract a)

unsigned short __fractunsdghi (long long fract a)

unsigned int __fractunsdqsi (long long fract a)

unsigned
unsigned

long __fractunsdqdi (long long fract a)
long long __fractunsdqti (long long fract a)

Runtime Function
Runtime Function
Runtime Function

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[Runtime Function]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]



Chapter 4:

The GCC low-level runtime library

unsigned char __fractunshaqi (short accum a)

unsigned short __fractunshahi (short accum a)

unsigned int __fractunshasi (short accum a)

unsigned long __fractunshadi (short accum a)

unsigned long long __fractunshati (short accum a)

unsigned char __fractunssaqi (accum a)

unsigned short __fractunssahi (accum a)

unsigned int __fractunssasi (accum a)

unsigned long __fractunssadi (accum a)

unsigned long long __fractunssati (accum a)

unsigned char __fractunsdaqi (long accum a)

unsigned short __fractunsdahi (long accum a)

unsigned int __fractunsdasi (long accum a)

unsigned long __fractunsdadi (long accum a)

unsigned long long __fractunsdati (long accum a)

unsigned char __fractunstaqi (long long accum a)

unsigned short __fractunstahi (long long accum a)

unsigned int __fractunstasi (long long accum a)

unsigned long __fractunstadi (long long accum a)

unsigned long long __fractunstati (long long accum a)

unsigned char __fractunsuqqqi (unsigned short fract a)

unsigned short __fractunsuqqghi (unsigned short fract a)

unsigned int __fractunsuqqgsi (unsigned short fract a)

unsigned long __fractunsuqqdi (unsigned short fract a)

unsigned long long __fractunsuqqti (unsigned short fract
a)

unsigned char __fractunsuhqqi (unsigned fract a)

unsigned short __fractunsuhqghi (unsigned fract a)

unsigned int __fractunsuhqgsi (unsigned fract a)

unsigned long __fractunsuhqdi (unsigned fract a)

unsigned long long __fractunsuhqti (unsigned fract a)

unsigned char __fractunsusqqi (unsigned long fract a)

unsigned short __fractunsusqghi (unsigned long fract a)

unsigned int __fractunsusqsi (unsigned long fract a)

unsigned long __fractunsusqdi (unsigned long fract a)

unsigned long long __fractunsusqti (unsigned long fract
)

unsigned char __fractunsudqqi (unsigned long long fract a)

unsigned short __fractunsudghi (unsigned long long fract
a)

unsigned int __fractunsudqsi (unsigned long long fract a)

unsigned long __fractunsudqdi (unsigned long long fract a)

unsigned long long __fractunsudqti (unsigned long long
fract a)

unsigned char __fractunsuhaqi (unsigned short accum a)

unsigned short __fractunsuhahi (unsigned short accum a)

unsigned

int __fractunsuhasi (unsigned short accum a)

o1

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]



52 GNU Compiler Collection (GCC) Internals

unsigned long __fractunsuhadi (unsigned short accum a)
unsigned long long __fractunsuhati (unsigned short
accum a)
unsigned char __fractunsusaqi (unsigned accum a)
unsigned short __fractunsusahi (unsigned accum a)
unsigned int __fractunsusasi (unsigned accum a)
unsigned long __fractunsusadi (unsigned accum a)
unsigned long long __fractunsusati (unsigned accum a)
unsigned char __fractunsudaqi (unsigned long accum a)
unsigned short __fractunsudahi (unsigned long accum a)
unsigned int __fractunsudasi (unsigned long accum a)
unsigned long __fractunsudadi (unsigned long accum a)
unsigned long long __fractunsudati (unsigned long

accum a)

unsigned char __fractunsutaqi (unsigned long long accum
a)

unsigned short __fractunsutahi (unsigned long long accum
a)

unsigned int __fractunsutasi (unsigned long long accum a)

unsigned long __fractunsutadi (unsigned long long accum
a)

unsigned long long __fractunsutati (unsigned long long
accum a)

short fract __fractunsqiqq (unsigned char a)

fract __fractunsqihq (unsigned char a)

long fract __fractunsqisq (unsigned char a)

long long fract __fractunsqidq (unsigned char a)

short accum __fractunsqiha (unsigned char a)

accum __fractunsqisa (unsigned char a)

long accum __fractunsqida (unsigned char a)

long long accum __fractunsqita (unsigned char a)

unsigned short fract __fractunsqiuqq (unsigned char a)

unsigned fract __fractunsqiuhq (unsigned char a)

unsigned long fract __fractunsqiusq (unsigned char a)

unsigned long long fract __fractunsqiudq (unsigned
char a)

unsigned short accum __fractunsqiuha (unsigned char a)

unsigned accum __fractunsqiusa (unsigned char a)

unsigned long accum __fractunsqiuda (unsigned char a)

unsigned long long accum __fractunsqiuta (unsigned
char a)

short fract __fractunshiqq (unsigned short a)

fract __fractunshihq (unsigned short a)

long fract __fractunshisq (unsigned short a)

long long fract __fractunshidq (unsigned short a)

short accum __fractunshiha (unsigned short a)

accum __fractunshisa (unsigned short a)

[Runtime Function]
[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



Chapter 4: The GCC low-level runtime library

long accum __fractunshida (unsigned short a)

long long accum __fractunshita (unsigned short a)

unsigned short fract __fractunshiuqq (unsigned short a)

unsigned fract __fractunshiuhq (unsigned short a)

unsigned long fract __fractunshiusq (unsigned short a)

unsigned long long fract __fractunshiudq (unsigned
short a)

unsigned short accum __fractunshiuha (unsigned short a)

unsigned accum __fractunshiusa (unsigned short a)

unsigned long accum __fractunshiuda (unsigned short a)

unsigned long long accum __fractunshiuta (unsigned
short a)

short fract __fractunssiqq (unsigned int a)

fract __fractunssihq (unsigned int a)

long fract __fractunssisq (unsigned int a)

long long fract __fractunssidq (unsigned int a)

short accum __fractunssiha (unsigned int a)

accum __fractunssisa (unsigned int a)

long accum __fractunssida (unsigned int a)

long long accum __fractunssita (unsigned int a)

unsigned short fract __fractunssiuqq (unsigned int a)

unsigned fract __fractunssiuhq (unsigned int a)

unsigned long fract __fractunssiusq (unsigned int a)

unsigned long long fract __fractunssiudq (unsigned int
a)

unsigned short accum __fractunssiuha (unsigned int a)

unsigned accum __fractunssiusa (unsigned int a)

unsigned long accum __fractunssiuda (unsigned int a)

unsigned long long accum __fractunssiuta (unsigned int
a)

short fract __fractunsdiqq (unsigned long a)

fract __fractunsdihq (unsigned long a)

long fract __fractunsdisq (unsigned long a)

long long fract __fractunsdidq (unsigned long a)

short accum __fractunsdiha (unsigned long a)

accum __fractunsdisa (unsigned long a)

long accum __fractunsdida (unsigned long a)

long long accum __fractunsdita (unsigned long a)

unsigned short fract __fractunsdiuqq (unsigned long a)

unsigned fract __fractunsdiuhq (unsigned long a)

unsigned long fract __fractunsdiusq (unsigned long a)

unsigned long long fract __fractunsdiudq (unsigned
long a)

unsigned short accum __fractunsdiuha (unsigned long a)

unsigned accum __fractunsdiusa (unsigned long a)

unsigned long accum __fractunsdiuda (unsigned long a)

93

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]



54 GNU Compiler Collection (GCC) Internals

unsigned long long accum __fractunsdiuta (unsigned
long a)

short fract __fractunstiqq (unsigned long long a)

fract __fractunstihq (unsigned long long a)

long fract __fractunstisq (unsigned long long a)

long long fract __fractunstidq (unsigned long long a)

short accum __fractunstiha (unsigned long long a)

accum __fractunstisa (unsigned long long a)

long accum __fractunstida (unsigned long long a)

long long accum __fractunstita (unsigned long long a)

unsigned short fract __fractunstiuqq (unsigned long
long a)

unsigned fract __fractunstiuhq (unsigned long long a)

unsigned long fract __fractunstiusq (unsigned long long
a)

unsigned long long fract
long long a)

unsigned short accum
long a)

unsigned accum _

unsigned long accum
)

unsigned long long accum
long long a)

_fractunstiudq (unsigned

_fractunstiuha (unsigned long

_fractunstiusa (unsigned long long a)
_fractunstiuda (unsigned long long

__fractunstiuta (unsigned

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

These functions convert from fractionals to unsigned non-fractionals; and from un-

signed non-fractionals to fractionals, without saturation.

short fract __satfractunsqiqq (unsigned char a)

fract __satfractunsqihq (unsigned char a)

long fract __satfractunsqisq (unsigned char a)

long long fract __satfractunsqidq (unsigned char a)

short accum __satfractunsqiha (unsigned char a)

accum __satfractunsqisa (unsigned char a)

long accum __satfractunsqida (unsigned char a)

long long accum __satfractunsqita (unsigned char a)

unsigned short fract __satfractunsqiuqq (unsigned char
)

unsigned fract __satfractunsqiuhq (unsigned char a)

unsigned long fract __satfractunsqiusq (unsigned char
)

unsigned long long fract
(unsigned char a)

unsigned short accum __satfractunsqiuha (unsigned char
a)

unsigned accum _

unsigned long accum

a)

_satfractunsqiudq

_satfractunsqiusa (unsigned char a)
_satfractunsqiuda (unsigned char

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]



Chapter 4: The GCC low-level runtime library

unsigned long long accum
(unsigned char a)

short fract __satfractunshiqq (unsigned short a)

fract __satfractunshihq (unsigned short a)

long fract __satfractunshisq (unsigned short a)

long long fract __satfractunshidq (unsigned short a)

short accum __satfractunshiha (unsigned short a)

accum __satfractunshisa (unsigned short a)

long accum __satfractunshida (unsigned short a)

long long accum __satfractunshita (unsigned short a)

unsigned short fract __satfractunshiuqq (unsigned
short a)

unsigned fract __satfractunshiuhq (unsigned short a)

unsigned long fract __satfractunshiusq (unsigned short
a)

unsigned long long fract
(unsigned short a)

unsigned short accum
short a)

unsigned accum __satfractunshiusa (unsigned short a)

unsigned long accum __satfractunshiuda (unsigned short
)

unsigned long long accum
(unsigned short a)

short fract __satfractunssiqq (unsigned int a)

fract __satfractunssihq (unsigned int a)

long fract __satfractunssisq (unsigned int a)

long long fract __satfractunssidq (unsigned int a)

short accum __satfractunssiha (unsigned int a)

accum __satfractunssisa (unsigned int a)

long accum __satfractunssida (unsigned int a)

long long accum __satfractunssita (unsigned int a)

unsigned short fract __satfractunssiuqq (unsigned int
)

unsigned fract __satfractunssiuhq (unsigned int a)

unsigned long fract __satfractunssiusq (unsigned int a)

unsigned long long fract __satfractunssiudq
(unsigned int a)

unsigned short accum
a)

unsigned accum __satfractunssiusa (unsigned int a)

unsigned long accum __satfractunssiuda (unsigned int a)

unsigned long long accum __satfractunssiuta
(unsigned int a)

short fract __satfractunsdiqq (unsigned long a)

fract __satfractunsdihq (unsigned long a)

long fract __satfractunsdisq (unsigned long a)

_satfractunsqiuta

_satfractunshiudq

_satfractunshiuha (unsigned

__satfractunshiuta

_satfractunssiuha (unsigned int

95

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]



56 GNU Compiler Collection (GCC) Internals

long long fract __satfractunsdidq (unsigned long a)

short accum __satfractunsdiha (unsigned long a)

accum __satfractunsdisa (unsigned long a)

long accum __satfractunsdida (unsigned long a)

long long accum __satfractunsdita (unsigned long a)

unsigned short fract __satfractunsdiuqq (unsigned long
a)

unsigned fract __satfractunsdiuhq (unsigned long a)

unsigned long fract __satfractunsdiusq (unsigned long
a)

unsigned long long fract
(unsigned long a)

unsigned short accum
)

unsigned accum __satfractunsdiusa (unsigned long a)

unsigned long accum __satfractunsdiuda (unsigned long
)

unsigned long long accum
(unsigned long a)

short fract __satfractunstiqq (unsigned long long a)

fract __satfractunstihq (unsigned long long a)

long fract __satfractunstisq (unsigned long long a)

long long fract __satfractunstidq (unsigned long long a)

short accum __satfractunstiha (unsigned long long a)

accum __satfractunstisa (unsigned long long a)

long accum __satfractunstida (unsigned long long a)

long long accum __satfractunstita (unsigned long long a)

unsigned short fract __satfractunstiuqq (unsigned long
long a)

unsigned fract __satfractunstiuhq (unsigned long long a)

unsigned long fract __satfractunstiusq (unsigned long
long a)

unsigned long long fract
(unsigned long long a)

unsigned short accum __satfractunstiuha (unsigned long
long a)

unsigned accum __satfractunstiusa (unsigned long long a)

unsigned long accum __satfractunstiuda (unsigned long
long a)

unsigned long long accum
(unsigned long long a)

__satfractunsdiudq

_satfractunsdiuha (unsigned long

_satfractunsdiuta

_satfractunstiudq

_satfractunstiuta

Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function
Runtime Function

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]
[Runtime Function]

[Runtime Function]

These functions convert from unsigned non-fractionals to fractionals, with saturation.

4.5 Language-independent routines for exception handling

document me!

_Unwind_DeleteException



Chapter 4: The GCC low-level runtime library 57

_Unwind_Find_FDE
_Unwind_ForcedUnwind
_Unwind_GetGR

_Unwind_GetIP
_Unwind_GetLanguageSpecificData
_Unwind_GetRegionStart
_Unwind_GetTextRelBase
_Unwind_GetDataRelBase
_Unwind_RaiseException
_Unwind_Resume

_Unwind_SetGR

_Unwind_SetIP
_Unwind_FindEnclosingFunction
_Unwind_SjLj_Register
_Unwind_SjLj_Unregister
_Unwind_SjLj_RaiseException
_Unwind_SjLj_ForcedUnwind
_Unwind_SjLj_Resume
__deregister_frame
__deregister_frame_info
__deregister_frame_info_bases
__register_frame
__register_frame_info
__register_frame_info_bases
__register_frame_info_table
__register_frame_info_table_bases
__register_frame_table

4.6 Miscellaneous runtime library routines
4.6.1 Cache control functions

void __clear_cache (char *beg, char *end) [Runtime Function]
This function clears the instruction cache between beg and end.

4.6.2 Split stack functions and variables

size_t len, void **next_segment, void **next_sp, void **initial_sp)
When using ‘-fsplit-stack’, this call may be used to iterate over the stack segments.
It may be called like this:

void * __splitstack_find (void *segment_arg, void *sp, [Runtime Function]

void *next_segment = NULL;
void *next_sp = NULL;

void *initial_sp = NULL;
void *stack;

size_t stack_size;

while ((stack =

splitstack_find (next_segment, next_sp,
&stack_size, &next_segment,
&next_sp, &initial_sp))
!= NULL)
{
/* Stack segment starts at stack and is
stack_size bytes long. */



58 GNU Compiler Collection (GCC) Internals

There is no way to iterate over the stack segments of a different thread. However,
what is permitted is for one thread to call this with the segment_arg and sp argu-
ments NULL, to pass next_segment, next_sp, and initial_sp to a different thread, and
then to suspend one way or another. A different thread may run the subsequent
__splitstack_find iterations. Of course, this will only work if the first thread is
suspended while the second thread is calling __splitstack_find. If not, the second
thread could be looking at the stack while it is changing, and anything could happen.

__morestack_segments [Variable]
__morestack_current_segment [Variable]
__morestack_initial_sp [Variable]

Internal variables used by the ‘-fsplit-stack’ implementation.



Chapter 5: Language Front Ends in GCC 59

5 Language Front Ends in GCC

The interface to front ends for languages in GCC, and in particular the tree structure (see
Chapter 11 [GENERIC], page 161), was initially designed for C, and many aspects of it
are still somewhat biased towards C and C-like languages. It is, however, reasonably well
suited to other procedural languages, and front ends for many such languages have been
written for GCC.

Writing a compiler as a front end for GCC, rather than compiling directly to assembler
or generating C code which is then compiled by GCC, has several advantages:

e GCC front ends benefit from the support for many different target machines already
present in GCC.

e GCC front ends benefit from all the optimizations in GCC. Some of these, such as
alias analysis, may work better when GCC is compiling directly from source code then
when it is compiling from generated C code.

e Better debugging information is generated when compiling directly from source code
than when going via intermediate generated C code.

Because of the advantages of writing a compiler as a GCC front end, GCC front ends
have also been created for languages very different from those for which GCC was designed,
such as the declarative logic/functional language Mercury. For these reasons, it may also
be useful to implement compilers created for specialized purposes (for example, as part of
a research project) as GCC front ends.






Chapter 6: Source Tree Structure and Build System 61

6 Source Tree Structure and Build System

This chapter describes the structure of the GCC source tree, and how GCC is built. The
user documentation for building and installing GCC is in a separate manual (http://gcc.
gnu.org/install/), with which it is presumed that you are familiar.

6.1 Configure Terms and History

The configure and build process has a long and colorful history, and can be confusing
to anyone who doesn’t know why things are the way they are. While there are other
documents which describe the configuration process in detail, here are a few things that
everyone working on GCC should know.

There are three system names that the build knows about: the machine you are building
on (build), the machine that you are building for (host), and the machine that GCC will
produce code for (target). When you configure GCC, you specify these with ‘--build=’,
‘-~host=’, and ‘--target=".

Specifying the host without specifying the build should be avoided, as configure may
(and once did) assume that the host you specify is also the build, which may not be true.

If build, host, and target are all the same, this is called a native. If build and host are the
same but target is different, this is called a cross. If build, host, and target are all different
this is called a canadian (for obscure reasons dealing with Canada’s political party and the
background of the person working on the build at that time). If host and target are the
same, but build is different, you are using a cross-compiler to build a native for a different
system. Some people call this a host-x-host, crossed native, or cross-built native. If build
and target are the same, but host is different, you are using a cross compiler to build a cross
compiler that produces code for the machine you’re building on. This is rare, so there is no
common way of describing it. There is a proposal to call this a crossback.

If build and host are the same, the GCC you are building will also be used to build the
target libraries (like libstdc++). If build and host are different, you must have already
built and installed a cross compiler that will be used to build the target libraries (if you
configured with ‘--target=foo-bar’, this compiler will be called foo-bar-gcc).

In the case of target libraries, the machine you’re building for is the machine you specified
with ‘--target’. So, build is the machine you’re building on (no change there), host is the
machine you’re building for (the target libraries are built for the target, so host is the target
you specified), and target doesn’t apply (because you're not building a compiler, you're
building libraries). The configure/make process will adjust these variables as needed. It
also sets $with_cross_host to the original ‘--host’ value in case you need it.

The 1libiberty support library is built up to three times: once for the host, once for the
target (even if they are the same), and once for the build if build and host are different.
This allows it to be used by all programs which are generated in the course of the build
process.

6.2 Top Level Source Directory

The top level source directory in a GCC distribution contains several files and directories
that are shared with other software distributions such as that of GNU Binutils. It also
contains several subdirectories that contain parts of GCC and its runtime libraries:


http://gcc.gnu.org/install/
http://gcc.gnu.org/install/

62 GNU Compiler Collection (GCC) Internals

‘boehm-gc’
The Boehm conservative garbage collector, optionally used as part of the ObjC
runtime library when configured with ‘--enable-objc-gc’.

‘config’  Autoconf macros and Makefile fragments used throughout the tree.

‘contrib’ Contributed scripts that may be found useful in conjunction with GCC. One
of these, ‘contrib/texi2pod.pl’, is used to generate man pages from Texinfo
manuals as part of the GCC build process.

‘fixincludes’
The support for fixing system headers to work with GCC. See
‘fixincludes/README’ for more information. The headers fixed by this mech-
anism are installed in ‘Iibsubdir/include-fixed’. Along with those headers,
‘README-fixinc’ is also installed, as ‘1ibsubdir/include-fixed/README’.

gcc The main sources of GCC itself (except for runtime libraries), including op-
timizers, support for different target architectures, language front ends, and
testsuites. See Section 6.3 [The ‘gcc’ Subdirectory], page 63, for details.

‘gnattools’
Support tools for GNAT.

‘include’ Headers for the 1libiberty library.

‘intl’ GNU 1libintl, from GNU gettext, for systems which do not include it in
libc.

‘libada’ The Ada runtime library.

‘libatomic’
The runtime support library for atomic operations (e.g. for __sync and __
atomic).
‘libcpp’  The C preprocessor library.
‘libdecnumber’
The Decimal Float support library.
‘libffi’  The libffi library, used as part of the Go runtime library.
‘libgcc’”  The GCC runtime library.
‘libgfortran’
The Fortran runtime library.
‘libgo’ The Go runtime library. The bulk of this library is mirrored from the master

Go repository.
‘libgomp’ The GNU Offloading and Multi Processing Runtime Library.
‘libiberty’
The libiberty library, used for portability and for some generally useful data

structures and algorithms. See Section “Introduction” in GNU libiberty, for
more information about this library.

‘libitm’  The runtime support library for transactional memory.


https://github.com/golang/go
https://github.com/golang/go

Chapter 6: Source Tree Structure and Build System 63

‘libobjc’ The Objective-C and Objective-C++ runtime library.

‘libquadmath’
The runtime support library for quad-precision math operations.

‘libphobos’
The D standard and runtime library. The bulk of this library is mirrored from
the master D repositories.

‘libssp’  The Stack protector runtime library.

‘libstdc++-v3’
The C++ runtime library.

‘lto-plugin’
Plugin used by the linker if link-time optimizations are enabled.

‘maintainer-scripts’
Scripts used by the gccadmin account on gcc.gnu.org.

‘z1ib’ The z1ib compression library, used for compressing and uncompressing GCC’s
intermediate language in LTO object files.

The build system in the top level directory, including how recursion into subdirectories
works and how building runtime libraries for multilibs is handled, is documented in a sepa-
rate manual, included with GNU Binutils. See Section “GNU configure and build system”
in The GNU configure and build system, for details.

6.3 The ‘gcc’ Subdirectory

The ‘gec’ directory contains many files that are part of the C sources of GCC, other files used
as part of the configuration and build process, and subdirectories including documentation
and a testsuite. The files that are sources of GCC are documented in a separate chapter.
See Chapter 9 [Passes and Files of the Compiler], page 127.

6.3.1 Subdirectories of ‘gcc’

The ‘gcc’ directory contains the following subdirectories:

‘language’

Subdirectories for various languages. Directories containing a file
‘config-lang.in’ are language subdirectories. The contents of the
subdirectories ‘c’ (for C), ‘cp’ (for C++), ‘objc’ (for Objective-C), ‘objcp’
(for Objective-C++), and ‘1to’ (for LTO) are documented in this manual
(see Chapter 9 [Passes and Files of the Compiler|, page 127); those for other
languages are not. See Section 6.3.8 [Anatomy of a Language Front End],
page 71, for details of the files in these directories.

‘common’  Source files shared between the compiler drivers (such as gcc) and the compilers
proper (such as ‘cc1’). If an architecture defines target hooks shared between
those places, it also has a subdirectory in ‘common/config’. See Section 18.1
[Target Structure|, page 479.


https://github.com/dlang

64 GNU Compiler Collection (GCC) Internals

‘config’  Configuration files for supported architectures and operating systems. See
Section 6.3.9 [Anatomy of a Target Back End], page 75, for details of the files
in this directory.

Texinfo documentation for GCC, together with automatically generated man
pages and support for converting the installation manual to HTML. See
Section 6.3.7 [Documentation|, page 69.

‘doc

‘ginclude’
System headers installed by GCC, mainly those required by the C standard of
freestanding implementations. See Section 6.3.6 [Headers Installed by GCC],
page 68, for details of when these and other headers are installed.

po Message catalogs with translations of messages produced by GCC into various
languages, ‘language.po’. This directory also contains ‘gcc.pot’, the template
for these message catalogues, ‘exgettext’, a wrapper around gettext to ex-
tract the messages from the GCC sources and create ‘gcc.pot’, which is run
by ‘make gcc.pot’, and ‘EXCLUDES’, a list of files from which messages should
not be extracted.

‘testsuite’
The GCC testsuites (except for those for runtime libraries). See Chapter 7
[Testsuites|, page 79.

6.3.2 Configuration in the ‘gcc’ Directory

The ‘gcc’ directory is configured with an Autoconf-generated script ‘configure’. The
‘configure’ script is generated from ‘configure.ac’ and ‘aclocal.m4’. From the files
‘configure.ac’ and ‘acconfig.h’, Autoheader generates the file ‘config.in’. The file
‘cstamp-h.in’ is used as a timestamp.

6.3.2.1 Scripts Used by ‘configure’

‘configure’ uses some other scripts to help in its work:

e The standard GNU ‘config.sub’ and ‘config.guess’ files, kept in the top level direc-
tory, are used.

e The file ‘config.gcc’ is used to handle configuration specific to the particular target
machine. The file ‘config.build’ is used to handle configuration specific to the par-
ticular build machine. The file ‘config.host’ is used to handle configuration specific
to the particular host machine. (In general, these should only be used for features
that cannot reasonably be tested in Autoconf feature tests.) See Section 6.3.2.2 [The
‘config.build’; ‘config.host’; and ‘config.gcc’ Files], page 65, for details of the
contents of these files.

e Fach language subdirectory has a file ‘language/config-lang.in’ that is used for
front-end-specific configuration. See Section 6.3.8.2 [The Front End ‘config-lang.in’
File], page 73, for details of this file.

e A helper script ‘configure.frag’ is used as part of creating the output of ‘configure’.



Chapter 6: Source Tree Structure and Build System 65

6.3.2.2 The ‘config.build’; ‘config.host’; and ‘config.gcc’ Files

The ‘config.build’ file contains specific rules for particular systems which GCC is built
on. This should be used as rarely as possible, as the behavior of the build system can always
be detected by autoconf.

The ‘config.host’ file contains specific rules for particular systems which GCC will run
on. This is rarely needed.

The ‘config.gcc’ file contains specific rules for particular systems which GCC will gen-
erate code for. This is usually needed.

Each file has a list of the shell variables it sets, with descriptions, at the top of the file.

FIXME: document the contents of these files, and what variables should be set to control
build, host and target configuration.

6.3.2.3 Files Created by configure

Here we spell out what files will be set up by ‘configure’ in the ‘gcc’ directory. Some
other files are created as temporary files in the configuration process, and are not used in
the subsequent build; these are not documented.

e ‘Makefile’is constructed from ‘Makefile.in’, together with the host and target frag-
ments (see Chapter 20 [Makefile Fragments|, page 667) ‘t-target’ and ‘x-host’ from
‘config’, if any, and language Makefile fragments ‘language/Make-lang.in’.

e ‘auto-host.h’ contains information about the host machine determined by
‘configure’. If the host machine is different from the build machine, then
‘auto-build.h’ is also created, containing such information about the build machine.

e ‘config.status’ is a script that may be run to recreate the current configuration.

e ‘configargs.h’is a header containing details of the arguments passed to ‘configure’
to configure GCC, and of the thread model used.

e ‘cstamp-h’ is used as a timestamp.

e If a language ‘config-lang.in’ file (see Section 6.3.8.2 [The Front End
‘config-lang.in’ File], page 73) sets outputs, then the files listed in outputs there
are also generated.

The following configuration headers are created from the Makefile, using ‘mkconfig.sh’,
rather than directly by ‘configure’. ‘config.h’, ‘bconfig.h’ and ‘tconfig.h’ all contain
the ‘xm-machine.h’ header, if any, appropriate to the host, build and target machines
respectively, the configuration headers for the target, and some definitions; for the host
and build machines, these include the autoconfigured headers generated by ‘configure’.
The other configuration headers are determined by ‘config.gcc’. They also contain the
typedefs for rtx, rtvec and tree.

e ‘config.h’, for use in programs that run on the host machine.
e ‘beconfig.h’; for use in programs that run on the build machine.
e ‘tconfig.h’, for use in programs and libraries for the target machine.

e ‘tm_p.h’, which includes the header ‘machine-protos.h’ that contains prototypes for
functions in the target ‘machine.c’ file. The ‘machine-protos.h’ header is included
after the ‘rt1.h’ and/or ‘tree.h’ would have been included. The ‘tm_p.h’ also includes
the header ‘tm-preds.h’ which is generated by ‘genpreds’ program during the build
to define the declarations and inline functions for the predicate functions.



66

GNU Compiler Collection (GCC) Internals

6.3.3 Build System in the ‘gcc’ Directory

FIXME: describe the build system, including what is built in what stages. Also list the
various source files that are used in the build process but aren’t source files of GCC itself
and so aren’t documented below (see Chapter 9 [Passes|, page 127).

6.3.4 Makefile Targets

These targets are available from the ‘gcc’ directory:

all This is the default target. Depending on what your build /host/target configu-
ration is, it coordinates all the things that need to be built.

doc Produce info-formatted documentation and man pages. Essentially it calls
‘make man’ and ‘make info’.

dvi Produce DVI-formatted documentation.

pdf Produce PDF-formatted documentation.

html Produce HTML-formatted documentation.

man Generate man pages.

info Generate info-formatted pages.

mostlyclean
Delete the files made while building the compiler.

clean That, and all the other files built by ‘make all’.

distclean

That, and all the files created by configure.

maintainer-clean

srcextra

srcinfo
srcman

install

uninstall

check

Distclean plus any file that can be generated from other files. Note that addi-
tional tools may be required beyond what is normally needed to build GCC.

Generates files in the source directory that are not version-controlled but should
go into a release tarball.

Copies the info-formatted and manpage documentation into the source directory
usually for the purpose of generating a release tarball.

Installs GCC.

Deletes installed files, though this is not supported.

Run the testsuite. This creates a ‘testsuite’ subdirectory that has various
‘.sum’ and ‘.log’ files containing the results of the testing. You can run subsets
with, for example, ‘make check-gcc’. You can specify specific tests by setting
RUNTESTFLAGS to be the name of the ‘.exp’ file, optionally followed by (for
some tests) an equals and a file wildcard, like:

make check-gcc RUNTESTFLAGS="execute.exp=19980413-*"

Note that running the testsuite may require additional tools be installed, such
as Tcl or DejaGnu.



Chapter 6: Source Tree Structure and Build System 67

The toplevel tree from which you start GCC compilation is not the GCC directory,
but rather a complex Makefile that coordinates the various steps of the build, including
bootstrapping the compiler and using the new compiler to build target libraries.

When GCC is configured for a native configuration, the default action for make is to
do a full three-stage bootstrap. This means that GCC is built three times—once with the
native compiler, once with the native-built compiler it just built, and once with the compiler
it built the second time. In theory, the last two should produce the same results, which
‘make compare’ can check. Each stage is configured separately and compiled into a separate

directory, to minimize problems due to ABI incompatibilities between the native compiler
and GCC.

If you do a change, rebuilding will also start from the first stage and “bubble” up the
change through the three stages. Each stage is taken from its build directory (if it had
been built previously), rebuilt, and copied to its subdirectory. This will allow you to, for
example, continue a bootstrap after fixing a bug which causes the stage2 build to crash.
It does not provide as good coverage of the compiler as bootstrapping from scratch, but it
ensures that the new code is syntactically correct (e.g., that you did not use GCC extensions
by mistake), and avoids spurious bootstrap comparison failures'.

Other targets available from the top level include:

bootstrap-lean
Like bootstrap, except that the various stages are removed once they’re no
longer needed. This saves disk space.

bootstrap2

bootstrap2-lean
Performs only the first two stages of bootstrap. Unlike a three-stage bootstrap,
this does not perform a comparison to test that the compiler is running prop-
erly. Note that the disk space required by a “lean” bootstrap is approximately
independent of the number of stages.

stageN-bubble (N=1...4, profile, feedback)
Rebuild all the stages up to N, with the appropriate flags, “bubbling” the
changes as described above.

all-stageN (N=1...4, profile, feedback)
Assuming that stage N has already been built, rebuild it with the appropriate
flags. This is rarely needed.

cleanstrap
Remove everything (‘make clean’) and rebuilds (‘make bootstrap’).

compare  Compares the results of stages 2 and 3. This ensures that the compiler is
running properly, since it should produce the same object files regardless of
how it itself was compiled.

profiledbootstrap
Builds a compiler with profiling feedback information. In this case, the second
and third stages are named ‘profile’ and ‘feedback’, respectively. For more
information, see the installation instructions.

1 Except if the compiler was buggy and miscompiled some of the files that were not modified. In this case,
it’s best to use make restrap.



68 GNU Compiler Collection (GCC) Internals

restrap Restart a bootstrap, so that everything that was not built with the system
compiler is rebuilt.

stageN-start (N=1...4, profile, feedback)
For each package that is bootstrapped, rename directories so that, for example,
‘gce’ points to the stageN GCC, compiled with the stageN-1 GCC?.

You will invoke this target if you need to test or debug the stageN GCC. If
you only need to execute GCC (but you need not run ‘make’ either to rebuild it
or to run test suites), you should be able to work directly in the ‘stageN-gcc’
directory. This makes it easier to debug multiple stages in parallel.

stage For each package that is bootstrapped, relocate its build directory to indicate
its stage. For example, if the ‘gcc’ directory points to the stage2 GCC, after
invoking this target it will be renamed to ‘stage2-gcc’.

If you wish to use non-default GCC flags when compiling the stage2 and stage3 compilers,
set BOOT_CFLAGS on the command line when doing ‘make’.

Usually, the first stage only builds the languages that the compiler is written in: typically,
C and maybe Ada. If you are debugging a miscompilation of a different stage2 front-end (for
example, of the Fortran front-end), you may want to have front-ends for other languages in
the first stage as well. To do so, set STAGE1_LANGUAGES on the command line when doing
‘make’.

For example, in the aforementioned scenario of debugging a Fortran front-end miscompi-
lation caused by the stagel compiler, you may need a command like

make stage2-bubble STAGE1_LANGUAGES=c,fortran

Alternatively, you can use per-language targets to build and test languages that are not
enabled by default in stagel. For example, make £951 will build a Fortran compiler even in
the stagel build directory.

6.3.5 Library Source Files and Headers under the ‘gcc’ Directory

FIXME: list here, with explanation, all the C source files and headers under the ‘gcc’
directory that aren’t built into the GCC executable but rather are part of runtime libraries
and object files, such as ‘crtstuff.c’ and ‘unwind-dw2.c’. See Section 6.3.6 [Headers
Installed by GCC], page 68, for more information about the ‘ginclude’ directory.

6.3.6 Headers Installed by GCC

In general, GCC expects the system C library to provide most of the headers to be used
with it. However, GCC will fix those headers if necessary to make them work with GCC,
and will install some headers required of freestanding implementations. These headers are
installed in ‘1ibsubdir/include’. Headers for non-C runtime libraries are also installed by
GCC; these are not documented here. (FIXME: document them somewhere.)

Several of the headers GCC installs are in the ‘ginclude’ directory. These
headers, ‘iso646.h’, ‘stdarg.h’, ‘stdbool.h’; and ‘stddef.h’, are installed in
‘libsubdir/include’, unless the target Makefile fragment (see Section 20.1 [Target
Fragment|, page 667) overrides this by setting USER_H.

2 Customarily, the system compiler is also termed the ‘stage0’ GCC.



Chapter 6: Source Tree Structure and Build System 69

In addition to these headers and those generated by fixing system headers to work with
GCC, some other headers may also be installed in ‘Iibsubdir/include’. ‘config.gcc’
may set extra_headers; this specifies additional headers under ‘config’ to be installed on
some systems.

GCC installs its own version of <float.h>, from ‘ginclude/float.h’. This is done to
cope with command-line options that change the representation of floating point numbers.

GCC also installs its own version of <1imits.h>; this is generated from ‘glimits.h’; to-
gether with ‘1imitx.h’ and ‘1imity.h’ if the system also has its own version of <limits.h>.
(GCC provides its own header because it is required of ISO C freestanding implementations,
but needs to include the system header from its own header as well because other stan-
dards such as POSIX specify additional values to be defined in <1imits.h>.) The system’s
<limits.h> header is used via ‘libsubdir/include/syslimits.h’, which is copied from
‘gsyslimits.h’ if it does not need fixing to work with GCC; if it needs fixing, ‘syslimits.h’
is the fixed copy.

GCC can also install <tgmath.h>. It will do this when ‘config.gcc’ sets use_gcc_tgmath
to yes.

6.3.7 Building Documentation

The main GCC documentation is in the form of manuals in Texinfo format. These are
installed in Info format; DVI versions may be generated by ‘make dvi’, PDF versions by
‘make pdf’, and HTML versions by ‘make html’. In addition, some man pages are generated
from the Texinfo manuals, there are some other text files with miscellaneous documentation,
and runtime libraries have their own documentation outside the ‘gcc’ directory. FIXME:
document the documentation for runtime libraries somewhere.

6.3.7.1 Texinfo Manuals

The manuals for GCC as a whole, and the C and C++ front ends, are in files ‘doc/*.texi’.
Other front ends have their own manuals in files ‘language/*.texi’. Common files
‘doc/include/*.texi’ are provided which may be included in multiple manuals; the
following files are in ‘doc/include’:

‘fdl.texi’
The GNU Free Documentation License.

‘funding.texi’
The section “Funding Free Software”.

‘gcc—-common. texi’
Common definitions for manuals.

‘gpl_v3.texi’
The GNU General Public License.

‘texinfo.tex’
A copy of ‘texinfo.tex’ known to work with the GCC manuals.

DVI-formatted manuals are generated by ‘make dvi’, which uses texi2dvi (via the Make-
file macro $ (TEXI2DVI)). PDF-formatted manuals are generated by ‘make pdf’, which uses
texi2pdf (via the Makefile macro $ (TEXI2PDF)). HTML formatted manuals are generated



70 GNU Compiler Collection (GCC) Internals

by ‘make html’. Info manuals are generated by ‘make info’ (which is run as part of a boot-
strap); this generates the manuals in the source directory, using makeinfo via the Makefile
macro $ (MAKEINFQ), and they are included in release distributions.

Manuals are also provided on the GCC web site, in both HTML and PostScript forms.
This is done via the script ‘maintainer-scripts/update_web_docs_git’. Each manual to
be provided online must be listed in the definition of MANUALS in that file; a file ‘name. texi’
must only appear once in the source tree, and the output manual must have the same
name as the source file. (However, other Texinfo files, included in manuals but not them-
selves the root files of manuals, may have names that appear more than once in the source
tree.) The manual file ‘name.texi’ should only include other files in its own directory or in
‘doc/include’. HTML manuals will be generated by ‘makeinfo --html’, PostScript manu-
als by texi2dvi and dvips, and PDF manuals by texi2pdf. All Texinfo files that are parts
of manuals must be version-controlled, even if they are generated files, for the generation
of online manuals to work.

The installation manual, ‘doc/install.texi’, is also provided on the GCC web site. The
HTML version is generated by the script ‘doc/install.texi2html’.

6.3.7.2 Man Page Generation

Because of user demand, in addition to full Texinfo manuals, man pages are provided which
contain extracts from those manuals. These man pages are generated from the Texinfo
manuals using ‘contrib/texi2pod.pl’ and pod2man. (The man page for g++, ‘cp/g++.1,
just contains a ‘.so’ reference to ‘gcc.1’, but all the other man pages are generated from
Texinfo manuals.)

Because many systems may not have the necessary tools installed to generate the man
pages, they are only generated if the ‘configure’ script detects that recent enough tools
are installed, and the Makefiles allow generating man pages to fail without aborting the
build. Man pages are also included in release distributions. They are generated in the
source directory.

Magic comments in Texinfo files starting ‘@c man’ control what parts of a Texinfo file
go into a man page. Only a subset of Texinfo is supported by ‘texi2pod.pl’, and it may
be necessary to add support for more Texinfo features to this script when generating new
man pages. To improve the man page output, some special Texinfo macros are provided in
‘doc/include/gcc-common. texi’ which ‘texi2pod.pl’ understands:

@gcctabopt
Use in the form ‘@table @gcctabopt’ for tables of options, where for printed
output the effect of ‘G@code’ is better than that of ‘@option’ but for man page
output a different effect is wanted.

@gccoptlist
Use for summary lists of options in manuals.

Qgol Use at the end of each line inside ‘@gccoptlist’. This is necessary to avoid
problems with differences in how the ‘@gccoptlist’ macro is handled by dif-
ferent Texinfo formatters.

FIXME: describe the ‘texi2pod.pl’ input language and magic comments in more detail.



Chapter 6: Source Tree Structure and Build System 71

6.3.7.3 Miscellaneous Documentation

In addition to the formal documentation that is installed by GCC, there are several other
text files in the ‘gcc’ subdirectory with miscellaneous documentation:

‘ABOUT-GCC-NLS’
Notes on GCC’s Native Language Support. FIXME: this should be part of this
manual rather than a separate file.

‘ABOUT-NLS’
Notes on the Free Translation Project.

‘COPYING’
‘COPYING3’
The GNU General Public License, Versions 2 and 3.

‘COPYING.LIB’
‘COPYING3.LIB’
The GNU Lesser General Public License, Versions 2.1 and 3.

‘*ChangeLog*’
‘x/ChangeLog*’
Change log files for various parts of GCC.

‘LANGUAGES’
Details of a few changes to the GCC front-end interface. FIXME: the infor-
mation in this file should be part of general documentation of the front-end
interface in this manual.

‘ONEWS’ Information about new features in old versions of GCC. (For recent versions,
the information is on the GCC web site.)

‘README.Portability’
Information about portability issues when writing code in GCC. FIXME: why
isn’t this part of this manual or of the GCC Coding Conventions?

[P 4 )

FIXME: document such files in subdirectories, at least ‘config’, ‘c’, ‘cp’, ‘objc’,
‘testsuite’.

6.3.8 Anatomy of a Language Front End

A front end for a language in GCC has the following parts:
e A directory ‘language’ under ‘gcc’ containing source files for that front end. See
Section 6.3.8.1 [The Front End ‘language’ Directory], page 72, for details.
e A mention of the language in the list of supported languages in ‘gcc/doc/install.texi’ ]
e A mention of the name under which the language’s runtime library is recog-

nized by ‘--enable-shared=package’ in the documentation of that option in
‘gcc/doc/install.texi’.

e A mention of any special prerequisites for building the front end in the documentation
of prerequisites in ‘gcc/doc/install.texi’.

e Details of contributors to that front end in ‘gcc/doc/contrib.texi’. If the details are
in that front end’s own manual then there should be a link to that manual’s list in
‘contrib.texi’.



72 GNU Compiler Collection (GCC) Internals

e Information about support for that language in ‘gcc/doc/frontends.texi’.

e Information about standards for that language, and the front end’s support for them,
in ‘gcc/doc/standards.texi’. This may be a link to such information in the front
end’s own manual.

e Details of source file suffixes for that language and ‘-x lang’ options supported, in
‘gcc/doc/invoke. texi’.

e Entries in default_compilers in ‘gcc.c’ for source file suffixes for that language.

e Preferably testsuites, which may be under ‘gcc/testsuite’ or runtime library direc-
tories. FIXME: document somewhere how to write testsuite harnesses.

e Probably a runtime library for the language, outside the ‘gcc’ directory. FIXME:
document this further.

e Details of the directories of any runtime libraries in ‘gcc/doc/sourcebuild.texi’.

e Check targets in ‘Makefile.def’ for the top-level ‘Makefile’ to check just the compiler
or the compiler and runtime library for the language.

If the front end is added to the official GCC source repository, the following are also
necessary:

e At least one Bugzilla component for bugs in that front end and runtime libraries. This
category needs to be added to the Bugzilla database.

e Normally, one or more maintainers of that front end listed in ‘MAINTAINERS’.

e Mentions on the GCC web site in ‘index.html’ and ‘frontends.html’, with any rele-
vant links on ‘readings.html’. (Front ends that are not an official part of GCC may
also be listed on ‘frontends.html’, with relevant links.)

e A news item on ‘index.html’, and possibly an announcement on the
gcc-announce@gcc. gnu.org mailing list.

e The front end’s manuals should be mentioned in ‘maintainer-scripts/update_web_docs_git’}]
(see Section 6.3.7.1 [Texinfo Manuals], page 69) and the online manuals should be
linked to from ‘onlinedocs/index.html’.

e Any old releases or CVS repositories of the front end, before its inclusion in GCC,
should be made available on the GCC web site at https://gcc.gnu.org/pub/gecc/
old-releases/.

e The release and snapshot script ‘maintainer-scripts/gcc_release’ should be up-
dated to generate appropriate tarballs for this front end.

e If this front end includes its own version files that include the current date,
‘maintainer-scripts/update_version’ should be updated accordingly.

6.3.8.1 The Front End ‘language’ Directory

A front end ‘language’ directory contains the source files of that front end (but not of any
runtime libraries, which should be outside the ‘gcc’ directory). This includes documenta-
tion, and possibly some subsidiary programs built alongside the front end. Certain files are
special and other parts of the compiler depend on their names:

‘config-lang.in’
This file is required in all language subdirectories. See Section 6.3.8.2 [The
Front End ‘config-lang.in’ File], page 73, for details of its contents


mailto:gcc-announce@gcc.gnu.org
https://gcc.gnu.org/pub/gcc/old-releases/
https://gcc.gnu.org/pub/gcc/old-releases/

Chapter 6: Source Tree Structure and Build System 73

‘Make-lang.in’
This file is required in all language subdirectories. See Section 6.3.8.3 [The
Front End ‘Make-lang.in’ File], page 74, for details of its contents.

‘lang.opt’
This file registers the set of switches that the front end accepts on the command
line, and their ‘--help’ text. See Chapter 8 [Options|, page 119.

‘lang-specs.h’
This file provides entries for default_compilers in ‘gcc.c’ which override the
default of giving an error that a compiler for that language is not installed.

‘language-tree.def’
This file, which need not exist, defines any language-specific tree codes.

6.3.8.2 The Front End ‘config-lang.in’ File

Each language subdirectory contains a ‘config-lang.in’ file. This file is a shell script that
may define some variables describing the language:

language This definition must be present, and gives the name of the language for some
purposes such as arguments to ‘~—enable-languages’.

lang_requires
If defined, this variable lists (space-separated) language front ends other than
C that this front end requires to be enabled (with the names given being their
language settings). For example, the Obj-C++ front end depends on the C++
and ObjC front ends, so sets ‘lang_requires="objc c++"’.

subdir_requires
If defined, this variable lists (space-separated) front end directories other than
C that this front end requires to be present. For example, the Objective-C++
front end uses source files from the C++ and Objective-C front ends, so sets
‘subdir_requires="cp objc"’.

target_libs
If defined, this variable lists (space-separated) targets in the top level ‘Makefile’
to build the runtime libraries for this language, such as target-1libobjc.

lang_dirs
If defined, this variable lists (space-separated) top level directories (parallel to
‘gec’), apart from the runtime libraries, that should not be configured if this
front end is not built.

build_by_default
If defined to ‘no’, this language front end is not built unless enabled in a
‘-—enable-languages’ argument. Otherwise, front ends are built by default,
subject to any special logic in ‘configure.ac’ (as is present to disable the Ada
front end if the Ada compiler is not already installed).

boot_language
If defined to ‘yes’, this front end is built in stagel of the bootstrap. This is
only relevant to front ends written in their own languages.



74 GNU Compiler Collection (GCC) Internals

compilers
If defined, a space-separated list of compiler executables that will be run by the
driver. The names here will each end with ‘\$ (exeext)’.

outputs  If defined, a space-separated list of files that should be generated by ‘configure’
substituting values in them. This mechanism can be used to create a file
‘language/Makefile’ from ‘language/Makefile.in’, but this is deprecated,
building everything from the single ‘gcc/Makefile’ is preferred.

gtfiles  If defined, a space-separated list of files that should be scanned by ‘gengtype.c’
to generate the garbage collection tables and routines for this language. This
excludes the files that are common to all front ends. See Chapter 23 [Type
Information|, page 675.

6.3.8.3 The Front End ‘Make-lang.in’ File

Each language subdirectory contains a ‘Make-lang.in’ file. It contains targets lang.hook
(where lang is the setting of language in ‘config-lang.in’) for the following values of
hook, and any other Makefile rules required to build those targets (which may if necessary
use other Makefiles specified in outputs in ‘config-lang.in’, although this is deprecated).
It also adds any testsuite targets that can use the standard rule in ‘gcc/Makefile.in’ to
the variable lang_checks.

all.cross
start.encap
rest.encap
FIXME: exactly what goes in each of these targets?

tags Build an etags ‘TAGS’ file in the language subdirectory in the source tree.

info Build info documentation for the front end, in the build directory. This target
is only called by ‘make bootstrap’ if a suitable version of makeinfo is available,
so does not need to check for this, and should fail if an error occurs.

dvi Build DVI documentation for the front end, in the build directory. This should
be done using $(TEXI2DVI), with appropriate ‘-I’ arguments pointing to di-
rectories of included files.

pdf Build PDF documentation for the front end, in the build directory. This should
be done using $(TEXI2PDF), with appropriate ‘-I’ arguments pointing to di-
rectories of included files.

html Build HTML documentation for the front end, in the build directory.

man Build generated man pages for the front end from Texinfo manuals (see
Section 6.3.7.2 [Man Page Generation|, page 70), in the build directory. This
target is only called if the necessary tools are available, but should ignore
errors so as not to stop the build if errors occur; man pages are optional and
the tools involved may be installed in a broken way.

install-common
Install everything that is part of the front end, apart from the compiler exe-
cutables listed in compilers in ‘config-lang.in’.



Chapter 6: Source Tree Structure and Build System 75

install-info
Install info documentation for the front end, if it is present in the source direc-
tory. This target should have dependencies on info files that should be installed.

install-man
Install man pages for the front end. This target should ignore errors.

install-plugin
Install headers needed for plugins.

srcextra Copies its dependencies into the source directory. This generally should be used
for generated files such as Bison output files which are not version-controlled,
but should be included in any release tarballs. This target will be executed
during a bootstrap if ‘-—enable-generated-files-in-srcdir’ was specified
as a ‘configure’ option.

srcinfo

srcman Copies its dependencies into the source directory. These targets will be executed
during a bootstrap if ‘--enable-generated-files-in-srcdir’ was specified
as a ‘configure’ option.

uninstall
Uninstall files installed by installing the compiler. This is currently documented
not to be supported, so the hook need not do anything.

mostlyclean

clean

distclean

maintainer-clean
The language parts of the standard GNU ‘*clean’ targets. See Section “Stan-
dard Targets for Users” in GNU Coding Standards, for details of the standard
targets. For GCC, maintainer-clean should delete all generated files in the
source directory that are not version-controlled, but should not delete anything
that is.

‘Make-lang.in’ must also define a variable l1ang_0BJS to a list of host object files that
are used by that language.

6.3.9 Anatomy of a Target Back End
A back end for a target architecture in GCC has the following parts:

e A directory ‘machine’ under ‘gcc/config’, containing a machine description
‘machine.md’ file (see Chapter 17 [Machine Descriptions|, page 337), header files
‘machine.h’ and ‘machine-protos.h’ and a source file ‘machine.c’ (see Chapter 18
[Target Description Macros and Functions|, page 479), possibly a target Makefile
fragment ‘t-machine’ (see Section 20.1 [The Target Makefile Fragment|, page 667),
and maybe some other files. The names of these files may be changed from the
defaults given by explicit specifications in ‘config.gcc’.

e If necessary, a file ‘machine-modes.def’ in the ‘machine’ directory, containing addi-
tional machine modes to represent condition codes. See Section 18.15 [Condition Code],
page 572, for further details.



76 GNU Compiler Collection (GCC) Internals

e An optional ‘machine.opt’ file in the ‘machine’ directory, containing a list of target-
specific options. You can also add other option files using the extra_options variable
in ‘config.gcc’. See Chapter 8 [Options], page 119.

e Entries in ‘config.gcc’ (see Section 6.3.2.2 [The ‘config.gcc’ File|, page 65) for the
systems with this target architecture.

e Documentation in ‘gcc/doc/invoke. texi’ for any command-line options supported by
this target (see Section 18.3 [Run-time Target Specification], page 486). This means
both entries in the summary table of options and details of the individual options.

e Documentation in ‘gcc/doc/extend.texi’ for any target-specific attributes supported
(see Section 18.24 [Defining target-specific uses of __attribute__|, page 633), including
where the same attribute is already supported on some targets, which are enumerated
in the manual.

e Documentation in ‘gcc/doc/extend.texi’ for any target-specific pragmas supported.

e Documentation in ‘gcc/doc/extend. texi’ of any target-specific built-in functions sup-
ported.

e Documentation in ‘gcc/doc/extend. texi’ of any target-specific format checking styles
supported.

e Documentation in ‘gcc/doc/md.texi’ of any target-specific constraint letters (see
Section 17.8.5 [Constraints for Particular Machines|, page 357).

e A note in ‘gcc/doc/contrib.texi’ under the person or people who contributed the
target support.

e Entries in ‘gcc/doc/install.texi’ for all target triplets supported with this target
architecture, giving details of any special notes about installation for this target, or
saying that there are no special notes if there are none.

e Possibly other support outside the ‘gcc’ directory for runtime libraries. FIXME: ref-
erence docs for this. The 1ibstdc++ porting manual needs to be installed as info for
this to work, or to be a chapter of this manual.

The ‘machine.h’ header is included very early in GCC’s standard sequence of header files,
while ‘machine-protos.h’ is included late in the sequence. Thus ‘machine-protos.h’ can
include declarations referencing types that are not defined when ‘machine.h’ is included,
specifically including those from ‘rtl.h’ and ‘tree.h’. Since both RTL and tree types may
not be available in every context where ‘machine-protos.h’ is included, in this file you
should guard declarations using these types inside appropriate #ifdef RTX_CODE or #ifdef
TREE_CODE conditional code segments.

If the backend uses shared data structures that require GTY markers for garbage collection
(see Chapter 23 [Type Information|, page 675), you must declare those in ‘machine.h’
rather than ‘machine-protos.h’. Any definitions required for building libgce must also go
in ‘machine.h’.

GCC uses the macro IN_TARGET_CODE to distinguish between machine-specific ‘.c’ and
‘.cc’ files and machine-independent ‘.c’ and ‘.cc’ files. Machine-specific files should use
the directive:

#define IN_TARGET_CODE 1

before including config.h.



Chapter 6: Source Tree Structure and Build System 77

If the back end is added to the official GCC source repository, the following are also
necessary:

An entry for the target architecture in ‘readings.html’ on the GCC web site, with
any relevant links.

Details of the properties of the back end and target architecture in ‘backends.html’
on the GCC web site.

A news item about the contribution of support for that target architecture, in
‘index.html’ on the GCC web site.

Normally, one or more maintainers of that target listed in ‘MAINTAINERS’. Some existing
architectures may be unmaintained, but it would be unusual to add support for a target
that does not have a maintainer when support is added.

Target triplets covering all ‘config.gcc’ stanzas for the target, in the list in
‘contrib/config-list.mk’.






Chapter 7: Testsuites 79

7 Testsuites

GCC contains several testsuites to help maintain compiler quality. Most of the runtime
libraries and language front ends in GCC have testsuites. Currently only the C language
testsuites are documented here; FIXME: document the others.

7.1 Idioms Used in Testsuite Code

In general, C testcases have a trailing ‘-n.c’, starting with ‘-1.c’, in case other testcases
with similar names are added later. If the test is a test of some well-defined feature, it
should have a name referring to that feature such as ‘feature-1.c’. If it does not test a
well-defined feature but just happens to exercise a bug somewhere in the compiler, and a
bug report has been filed for this bug in the GCC bug database, ‘prbug-number-1.c’ is
the appropriate form of name. Otherwise (for miscellaneous bugs not filed in the GCC bug
database), and previously more generally, test cases are named after the date on which they
were added. This allows people to tell at a glance whether a test failure is because of a
recently found bug that has not yet been fixed, or whether it may be a regression, but does
not give any other information about the bug or where discussion of it may be found. Some
other language testsuites follow similar conventions.

In the ‘gcc.dg’ testsuite, it is often necessary to test that an error is indeed a hard error
and not just a warning—for example, where it is a constraint violation in the C standard,
which must become an error with ‘-pedantic-errors’. The following idiom, where the
first line shown is line line of the file and the line that generates the error, is used for this:

/* { dg-bogus "warning" "warning in place of error" } x/
/* { dg-error "regexp" "message" { target *-x-x } line } */

It may be necessary to check that an expression is an integer constant expression and has
a certain value. To check that E has value V, an idiom similar to the following is used:

char x[((E) == (V) 71 : -1)];

In ‘gcc.dg’ tests, __typeof__ is sometimes used to make assertions about the types of
expressions. See, for example, ‘gcc.dg/c99-condexpr-1.c’. The more subtle uses depend
on the exact rules for the types of conditional expressions in the C standard; see, for example,
‘gcc.dg/c99-intconst-1.c’.

It is useful to be able to test that optimizations are being made properly. This cannot
be done in all cases, but it can be done where the optimization will lead to code being
optimized away (for example, where flow analysis or alias analysis should show that certain
code cannot be called) or to functions not being called because they have been expanded
as built-in functions. Such tests go in ‘gcc.c-torture/execute’. Where code should be
optimized away, a call to a nonexistent function such as 1link_failure () may be inserted;
a definition

#ifndef __OPTIMIZE__
void

link_failure (void)
{

abort ();

}
#endif



80 GNU Compiler Collection (GCC) Internals

will also be needed so that linking still succeeds when the test is run without optimization.
When all calls to a built-in function should have been optimized and no calls to the non-
built-in version of the function should remain, that function may be defined as static to
call abort () (although redeclaring a function as static may not work on all targets).

All testcases must be portable. Target-specific testcases must have appropriate code to
avoid causing failures on unsupported systems; unfortunately, the mechanisms for this differ
by directory.

FIXME: discuss non-C testsuites here.

7.2 Directives used within DejaGnu tests

7.2.1 Syntax and Descriptions of test directives

Test directives appear within comments in a test source file and begin with dg-. Some of
these are defined within DejaGnu and others are local to the GCC testsuite.

The order in which test directives appear in a test can be important: directives local to
GCC sometimes override information used by the DejaGnu directives, which know nothing
about the GCC directives, so the DejaGnu directives must precede GCC directives.

Several test directives include selectors (see Section 7.2.2 [Selectors], page 84) which are
usually preceded by the keyword target or xfail.

7.2.1.1 Specify how to build the test

{ dg-do do-what-keyword [{ target/xfail selector }] }
do-what-keyword specifies how the test is compiled and whether it is executed.
It is one of:

preprocess
Compile with ‘-E’ to run only the preprocessor.

compile  Compile with ‘-S’ to produce an assembly code file.
assemble Compile with ‘=c’ to produce a relocatable object file.
link Compile, assemble, and link to produce an executable file.

run Produce and run an executable file, which is expected to return an
exit code of 0.

The default is compile. That can be overridden for a set of tests by redefining
dg-do-what-default within the .exp file for those tests.

If the directive includes the optional ‘{ target selector } then the test is
skipped unless the target system matches the selector.

If do-what-keyword is run and the directive includes the optional ‘{ xfail
selector }’ and the selector is met then the test is expected to fail. The
xfail clause is ignored for other values of do-what-keyword; those tests can
use directive dg-xfail-if.



Chapter 7: Testsuites 81

7.2.1.2 Specify additional compiler options

{ dg-options options [{ target selector }] }
This DejaGnu directive provides a list of compiler options, to be used if the
target system matches selector, that replace the default options used for this
set of tests.

{ dg-add-options feature ... }
Add any compiler options that are needed to access certain features. This
directive does nothing on targets that enable the features by default, or that
don’t provide them at all. It must come after all dg-options directives. For
supported values of feature see Section 7.2.4 [Add Options|, page 104.

{ dg-additional-options options [{ target selector }] }

This directive provides a list of compiler options, to be used if the target system
matches selector, that are added to the default options used for this set of tests.

7.2.1.3 Modify the test timeout value

The normal timeout limit, in seconds, is found by searching the following in order:
e the value defined by an earlier dg-timeout directive in the test
e variable tool_timeout defined by the set of tests
e gcc,timeout set in the target board
e 300

{ dg-timeout n [{target selector }] }
Set the time limit for the compilation and for the execution of the test to the
specified number of seconds.

{ dg-timeout-factor x [{ target selector }] }
Multiply the normal time limit for compilation and execution of the test by the
specified floating-point factor.

7.2.1.4 Skip a test for some targets

{ dg-skip-if comment { selector } [{ include-opts } [{ exclude-opts }]1] }
Arguments include-opts and exclude-opts are lists in which each element is
a string of zero or more GCC options. Skip the test if all of the following
conditions are met:

e the test system is included in selector

o for at least one of the option strings in include-opts, every option from that
string is in the set of options with which the test would be compiled; use
‘"x"’ for an include-opts list that matches any options; that is the default
if include-opts is not specified

e for each of the option strings in exclude-opts, at least one option from that
string is not in the set of options with which the test would be compiled;
use ‘"" for an empty exclude-opts list; that is the default if exclude-opts
is not specified

For example, to skip a test if option -0s is present:



82 GNU Compiler Collection (GCC) Internals

/* { dg—sklp—lf nn { k—sk—s% } { "_OS" } { nn } } */
To skip a test if both options -02 and -g are present:
/* { dg—Sklp—lf nn { k—k—% } { "-02 _gu } { nn } } */
To skip a test if either -02 or -03 is present:
/* { dg—Sklp—lf nn { k—k—% } { n_g" n"-Q3" } { nn } } */
To skip a test unless option -0s is present:
/* { dg_skip_if nn { k—3k—3% } { ll*ll } { II_OSII } } */
To skip a test if either -02 or -03 is used with -g but not if -fpic is also
present:
/* { dg—Sklp-lf nn { k—k—% } { 11_02 _gn ||_03 _gu } { "—fpiC" } } */

{ dg-require-effective-target keyword [{ selector }] }
Skip the test if the test target, including current multilib flags, is not covered by
the effective-target keyword. If the directive includes the optional ‘{ selector
}’ then the effective-target test is only performed if the target system matches
the selector. This directive must appear after any dg-do directive in the test
and before any dg-additional-sources directive. See Section 7.2.3 [Effective-
Target Keywords], page 84.

{ dg-require-support args }
Skip the test if the target does not provide the required support. These di-
rectives must appear after any dg-do directive in the test and before any dg-
additional-sources directive. They require at least one argument, which can
be an empty string if the specific procedure does not examine the argument. See
Section 7.2.5 [Require Support], page 105, for a complete list of these directives.

7.2.1.5 Expect a test to fail for some targets

{ dg-xfail-if comment { selector } [{ include-opts } [{ exclude-opts }1] }
Expect the test to fail if the conditions (which are the same as for dg-skip-if)
are met. This does not affect the execute step.

{ dg-xfail-run-if comment { selector } [{ include-opts } [{ exclude-opts }]1] }
Expect the execute step of a test to fail if the conditions (which are the same
as for dg-skip-if) are met.

7.2.1.6 Expect the test executable to fail

{ dg-shouldfail comment [{ selector } [{ include-opts } [{ exclude-opts }]1]1] }
Expect the test executable to return a nonzero exit status if the conditions
(which are the same as for dg-skip-if) are met.

7.2.1.7 Verify compiler messages

Where line is an accepted argument for these commands, a value of ‘0’ can be used if there
is no line associated with the message.

{ dg-error regexp [comment [{ target/xfail selector } [line] 1] }
This DejaGnu directive appears on a source line that is expected to get an error
message, or else specifies the source line associated with the message. If there is



Chapter 7: Testsuites 83

no message for that line or if the text of that message is not matched by regexp
then the check fails and comment is included in the FAIL message. The check
does not look for the string ‘error’ unless it is part of regexp.

{ dg-warning regexp [comment [{ target/xfail selector } [1ine] 1] }
This DejaGnu directive appears on a source line that is expected to get a
warning message, or else specifies the source line associated with the message.
If there is no message for that line or if the text of that message is not matched
by regexp then the check fails and comment is included in the FAIL message.
The check does not look for the string ‘warning’ unless it is part of regexp.

{ dg-message regexp [comment [{ target/xfail selector } [1ine] 1] }
The line is expected to get a message other than an error or warning. If there is
no message for that line or if the text of that message is not matched by regexp
then the check fails and comment is included in the FAIL message.

{ dg-bogus regexp [comment [{ target/xfail selector } [line] 1] }
This DejaGnu directive appears on a source line that should not get a message
matching regexp, or else specifies the source line associated with the bogus
message. It is usually used with ‘xfail’ to indicate that the message is a
known problem for a particular set of targets.

{ dg-line linenumvar }
This DejaGnu directive sets the variable linenumvar to the line number of the
source line. The variable linenumvar can then be used in subsequent dg-error,
dg-warning, dg-message and dg-bogus directives. For example:
int a; /* { dg-line first_def_a } */
float a; /* { dg-error "conflicting types of" } */
/* { dg-message "previous declaration of" "" { target *—*-* } first_def_a
{ dg-excess-errors comment [{ target/xfail selector }] }
This DejaGnu directive indicates that the test is expected to fail due to compiler
messages that are not handled by ‘dg-error’, ‘dg-warning’ or ‘dg-bogus’. For
this directive ‘xfail’ has the same effect as ‘target’.

{ dg-prune-output regexp }
Prune messages matching regexp from the test output.

7.2.1.8 Verify output of the test executable

{ dg-output regexp [{ target/xfail selector }] }
This DejaGnu directive compares regexp to the combined output that the test
executable writes to ‘stdout’ and ‘stderr’.

7.2.1.9 Specify environment variables for a test

{ dg-set-compiler-env-var var_name "var_value" }
Specify that the environment variable var_name needs to be set to var_value
before invoking the compiler on the test file.

{ dg-set-target-env-var var_name "var_value" }
Specify that the environment variable var_name needs to be set to var_value
before execution of the program created by the test.

} +/



84 GNU Compiler Collection (GCC) Internals

7.2.1.10 Specify additional files for a test

{ dg-additional-files "filelist" }
Specify additional files, other than source files, that must be copied to the
system where the compiler runs.

{ dg-additional-sources "filelist" }
Specify additional source files to appear in the compile line following the main
test file.

7.2.1.11 Add checks at the end of a test

{ dg-final { local-directive } }
This DejaGnu directive is placed within a comment anywhere in the source file
and is processed after the test has been compiled and run. Multiple ‘dg-final’
commands are processed in the order in which they appear in the source file.
See Section 7.2.6 [Final Actions|, page 107, for a list of directives that can be
used within dg-final.

7.2.2 Selecting targets to which a test applies

Several test directives include selectors to limit the targets for which a test is run or to
declare that a test is expected to fail on particular targets.

A selector is:

e one or more target triplets, possibly including wildcard characters; use ‘*-*—*’ to match
any target

e a single effective-target keyword (see Section 7.2.3 [Effective-Target Keywords|
page 84)

9

e a logical expression

Depending on the context, the selector specifies whether a test is skipped and reported
as unsupported or is expected to fail. A context that allows either ‘target’ or ‘xfail’
also allows ‘{ target selectorl xfail selector2 }’ to skip the test for targets that don’t
match selectorl and the test to fail for targets that match selector2.

A selector expression appears within curly braces and uses a single logical operator: one
of ‘v, ‘&&’, or ‘| |’. An operand is another selector expression, an effective-target keyword,
a single target triplet, or a list of target triplets within quotes or curly braces. For example:

{ target { ! "hppa*x—*-* ia64*—*-*" } }

{ target { powerpcx-*-* && 1p64 } }
{ xfail { 1p64 || vect_no_align } }

7.2.3 Keywords describing target attributes

Effective-target keywords identify sets of targets that support particular functionality. They
are used to limit tests to be run only for particular targets, or to specify that particular
sets of targets are expected to fail some tests.

Effective-target keywords are defined in ‘lib/target-supports.exp’ in the GCC test-
suite, with the exception of those that are documented as being local to a particular test
directory.



Chapter 7: Testsuites 85

The ‘effective target’ takes into account all of the compiler options with which the
test will be compiled, including the multilib options. By convention, keywords ending in
_nocache can also include options specified for the particular test in an earlier dg-options
or dg-add-options directive.

7.2.3.1 Endianness

be Target uses big-endian memory order for multi-byte and multi-word data.

le Target uses little-endian memory order for multi-byte and multi-word data.

7.2.3.2 Data type sizes

ilp32 Target has 32-bit int, long, and pointers.
1p64 Target has 32-bit int, 64-bit long and pointers.
11p64 Target has 32-bit int and long, 64-bit long long and pointers.

double64 Target has 64-bit double.

double64plus
Target has double that is 64 bits or longer.

longdoublel28
Target has 128-bit long double.

int32plus
Target has int that is at 32 bits or longer.

int16 Target has int that is 16 bits or shorter.

longlong64
Target has 64-bit long long.

long_neq_int
Target has int and long with different sizes.

int_eq_float
Target has int and float with the same size.

ptr_eq_long
Target has pointers (void *) and long with the same size.

large_double
Target supports double that is longer than float.

large_long_double
Target supports long double that is longer than double.

ptr32plus
Target has pointers that are 32 bits or longer.

size20plus
Target has a 20-bit or larger address space, so at least supports 16-bit array
and structure sizes.



86 GNU Compiler Collection (GCC) Internals

size32plus
Target has a 32-bit or larger address space, so at least supports 24-bit array
and structure sizes.

4byte_wchar_t
Target has wchar_t that is at least 4 bytes.

floatn Target has the _Floatn type.
floatnx  Target has the _Floatnx type.

floatn_runtime
Target has the _Floatn type, including runtime support for any options added
with dg-add-options.

floatnx_runtime
Target has the _Floatnx type, including runtime support for any options added
with dg-add-options.

floatn_nx_runtime
Target has runtime support for any options added with dg-add-options for
any _Floatn or _Floatnx type.

inf Target supports floating point infinite (inf) for type double.

7.2.3.3 Fortran-specific attributes

fortran_integer_16
Target supports Fortran integer that is 16 bytes or longer.

fortran_real_10
Target supports Fortran real that is 10 bytes or longer.

fortran_real_16
Target supports Fortran real that is 16 bytes or longer.

fortran_large_int
Target supports Fortran integer kinds larger than integer(8).

fortran_large_real
Target supports Fortran real kinds larger than real(8).

7.2.3.4 Vector-specific attributes

vect_align_stack_vars
The target’s ABI allows stack variables to be aligned to the preferred vector
alignment.

vect_avg_qi
Target supports both signed and unsigned averaging operations on vectors of
bytes.

vect_mulhrs_hi
Target supports both signed and unsigned multiply-high-with-round-and-scale
operations on vectors of half-words.



Chapter 7: Testsuites 87

vect_sdiv_pow2_si
Target supports signed division by constant power-of-2 operations on vectors
of 4-byte integers.

vect_condition
Target supports vector conditional operations.

vect_cond_mixed
Target supports vector conditional operations where comparison operands have
different type from the value operands.

vect_double
Target supports hardware vectors of double.

vect_double_cond_arith
Target supports conditional addition, subtraction, multiplication, division, min-
imum and maximum on vectors of double, via the cond_ optabs.

vect_element_align preferred
The target’s preferred vector alignment is the same as the element alignment.

vect_float

Target supports hardware vectors of float when ‘~funsafe-math-optimizations’]]

is in effect.

vect_float_strict

Target supports hardware vectors of float when ‘~funsafe-math-optimizations’}]

is not in effect. This implies vect_float.
vect_int Target supports hardware vectors of int.

vect_long
Target supports hardware vectors of long.

vect_long_long
Target supports hardware vectors of long long.

vect_check_ptrs
Target supports the check_raw_ptrs and check_war_ptrs optabs on vectors.

vect_fully_masked
Target supports fully-masked (also known as fully-predicated) loops, so that
vector loops can handle partial as well as full vectors.

vect_masked_store
Target supports vector masked stores.

vect_scatter_store
Target supports vector scatter stores.

vect_aligned_arrays
Target aligns arrays to vector alignment boundary.

vect_hw_misalign
Target supports a vector misalign access.



88

GNU Compiler Collection (GCC) Internals

vect_no_align

Target does not support a vector alignment mechanism.

vect_peeling_profitable

Target might require to peel loops for alignment purposes.

vect_no_int_min_max

Target does not support a vector min and max instruction on int.

vect_no_int_add

Target does not support a vector add instruction on int.

vect_no_bitwise

Target does not support vector bitwise instructions.

vect_bool_cmp

Target supports comparison of bool vectors for at least one vector length.

vect_char_add

Target supports addition of char vectors for at least one vector length.

vect_char_mult

Target supports vector char multiplication.

vect_short_mult

Target supports vector short multiplication.

vect_int_mult

Target supports vector int multiplication.

vect_long_mult

Target supports 64 bit vector long multiplication.

vect_extract_even_odd

Target supports vector even/odd element extraction.

vect_extract_even_odd_wide

Target supports vector even/odd element extraction of vectors with elements
SImode or larger.

vect_interleave

Target supports vector interleaving.

vect_strided

Target supports vector interleaving and extract even/odd.

vect_strided_wide

Target supports vector interleaving and extract even/odd for wide element
types.

vect_perm

Target supports vector permutation.

vect_perm_byte

Target supports permutation of vectors with 8-bit elements.

vect_perm_short

Target supports permutation of vectors with 16-bit elements.



Chapter 7: Testsuites 89

vect_perm3_byte
Target supports permutation of vectors with 8-bit elements, and for the default
vector length it is possible to permute:

{ a0, al, a2, b0, b1, b2, ... }
to:

{ a0, a0, a0, b0, b0, b0, ... }

{ a1, a1, al, bl, b1, bl, ... }

{ a2, a2, a2, b2, b2, b2, ... }

using only two-vector permutes, regardless of how long the sequence is.

vect_perm3_int
Like vect_perm3_byte, but for 32-bit elements.

vect_perm3_short
Like vect_perm3_byte, but for 16-bit elements.

vect_shift
Target supports a hardware vector shift operation.

vect_unaligned_possible
Target prefers vectors to have an alignment greater than element alignment,
but also allows unaligned vector accesses in some circumstances.

vect_variable_length
Target has variable-length vectors.

vect_widen_sum_hi_to_si
Target supports a vector widening summation of short operands into int re-
sults, or can promote (unpack) from short to int.

vect_widen_sum_qi_to_hi
Target supports a vector widening summation of char operands into short
results, or can promote (unpack) from char to short.

vect_widen_sum_qi_to_si
Target supports a vector widening summation of char operands into int results.

vect_widen_mult_qi_to_hi
Target supports a vector widening multiplication of char operands into short
results, or can promote (unpack) from char to short and perform non-widening
multiplication of short.

vect_widen_mult_hi_to_si
Target supports a vector widening multiplication of short operands into int
results, or can promote (unpack) from short to int and perform non-widening
multiplication of int.

vect_widen_mult_si_to_di_pattern
Target supports a vector widening multiplication of int operands into long
results.

vect_sdot_qi
Target supports a vector dot-product of signed char.



90 GNU Compiler Collection (GCC) Internals

vect_udot_qi
Target supports a vector dot-product of unsigned char.

vect_sdot_hi
Target supports a vector dot-product of signed short.

vect_udot_hi
Target supports a vector dot-product of unsigned short.

vect_pack_trunc
Target supports a vector demotion (packing) of short to char and from int to
short using modulo arithmetic.

vect_unpack
Target supports a vector promotion (unpacking) of char to short and from
char to int.

vect_intfloat_cvt
Target supports conversion from signed int to float.

vect_uintfloat_cvt
Target supports conversion from unsigned int to float.

vect_floatint_cvt
Target supports conversion from float to signed int.

vect_floatuint_cvt
Target supports conversion from float to unsigned int.

vect_intdouble_cvt
Target supports conversion from signed int to double.

vect_doubleint_cvt
Target supports conversion from double to signed int.

vect_max_reduc
Target supports max reduction for vectors.

vect_sizes_16B_8B
Target supports 16- and 8-bytes vectors.

vect_sizes_32B_16B
Target supports 32- and 16-bytes vectors.

vect_logical_reduc
Target supports AND, IOR and XOR reduction on vectors.

vect_fold_extract_last

Target supports the fold_extract_last optab.
7.2.3.5 Thread Local Storage attributes

tls Target supports thread-local storage

tls_native
Target supports native (rather than emulated) thread-local storage.

tls_runtime
Test system supports executing TLS executables.



Chapter 7: Testsuites 91

7.2.3.6 Decimal floating point attributes

dfp Targets supports compiling decimal floating point extension to C.

dfp_nocache
Including the options used to compile this particular test, the target supports
compiling decimal floating point extension to C.

dfprt Test system can execute decimal floating point tests.

dfprt_nocache
Including the options used to compile this particular test, the test system can
execute decimal floating point tests.

hard_dfp Target generates decimal floating point instructions with current options.

7.2.3.7 ARM-specific attributes
arm32 ARM target generates 32-bit code.

arm_little_endian
ARM target that generates little-endian code.

arm_eabi ARM target adheres to the ABI for the ARM Architecture.

arm_fp_ok
ARM target defines __ARM_FP using -mfloat-abi=softfp or equivalent op-
tions. Some multilibs may be incompatible with these options.

arm_fp_dp_ok
ARM target defines __ARM_FP with double-precision support using -mfloat-
abi=softfp or equivalent options. Some multilibs may be incompatible with
these options.

arm_hf_eabi
ARM target adheres to the VFP and Advanced SIMD Register Arguments vari-
ant of the ABI for the ARM Architecture (as selected with -mfloat-abi=hard).

arm_softfloat
ARM target uses the soft-float ABI with no floating-point instructions used
whatsoever (as selected with -mfloat-abi=soft).

arm_hard_vfp_ok
ARM target supports -mfpu=vfp -mfloat-abi=hard. Some multilibs may be
incompatible with these options.

arm_iwmmxt_ok
ARM target supports -mcpu=iwmmxt. Some multilibs may be incompatible with
this option.

arm_neon ARM target supports generating NEON instructions.

arm_tune_string_ops_prefer_neon
Test CPU tune supports inlining string operations with NEON instructions.

arm_neon_hw
Test system supports executing NEON instructions.



92 GNU Compiler Collection (GCC) Internals

arm_neonv2_hw
Test system supports executing NEON v2 instructions.

arm_neon_ok
ARM Target supports -mfpu=neon -mfloat-abi=softfp or compatible op-
tions. Some multilibs may be incompatible with these options.

arm_neon_ok_no_float_abi
ARM Target supports NEON with -mfpu=neon, but without any -mfloat-abi=
option. Some multilibs may be incompatible with this option.

arm_neonv2_ok
ARM Target supports -mfpu=neon-vfpv4 -mfloat-abi=softfp or compatible
options. Some multilibs may be incompatible with these options.

arm_fpl6_ok
Target supports options to generate VFP half-precision floating-point instruc-
tions. Some multilibs may be incompatible with these options. This test is
valid for ARM only.

arm_fpl6_hw
Target supports executing VFP half-precision floating-point instructions. This
test is valid for ARM only.

arm_neon_£fpl6_ok
ARM Target supports —-mfpu=neon-fp16 -mfloat-abi=softfp or compatible
options, including -mfp16-format=ieee if necessary to obtain the __£fp16 type.
Some multilibs may be incompatible with these options.

arm_neon_fpl6_hw
Test system supports executing Neon half-precision float instructions. (Implies
previous.)

arm_fpl6_alternative_ok
ARM target supports the ARM FP16 alternative format. Some multilibs may
be incompatible with the options needed.

arm_fpl6_none_ok
ARM target supports specifying none as the ARM FP16 format.

arm_thumbl_ok
ARM target generates Thumb-1 code for -mthumb.

arm_thumb2_ok
ARM target generates Thumb-2 code for -mthumb.

arm_nothumb
ARM target that is not using Thumb.

arm_vip_ok
ARM target supports -mfpu=vfp -mfloat-abi=softfp. Some multilibs may
be incompatible with these options.

arm_vip3_ok
ARM target supports -mfpu=vfp3 -mfloat-abi=softfp. Some multilibs may
be incompatible with these options.



Chapter 7: Testsuites 93

arm_arch_v8a_hard_ok
The compiler is targeting arm*—*-* and can compile and assemble code using
the options -march=armv8-a -mfpu=neon-fp-armv8 -mfloat-abi=hard. This
is not enough to guarantee that linking works.

arm_arch_v8a_hard_multilib
The compiler is targeting arm*-*—* and can build programs using the options
-march=armv8-a -mfpu=neon-fp-armv8 -mfloat-abi=hard. The target can
also run the resulting binaries.

arm_v8_vip_ok
ARM target supports -mfpu=fp-armv8 -mfloat-abi=softfp. Some multilibs
may be incompatible with these options.

arm_v8_neon_ok
ARM target supports -mfpu=neon-fp-armv8 -mfloat-abi=softfp. Some
multilibs may be incompatible with these options.

arm_v8_la_neon_ok
ARM target supports options to generate ARMv8.1-A Adv.SIMD instructions.
Some multilibs may be incompatible with these options.

arm_v8_la_neon_hw
ARM target supports executing ARMv8.1-A  Adv.SIMD instructions.
Some multilibs may be incompatible with the options needed. Implies
arm_v8_la_neon_ok.

arm_acq_rel
ARM target supports acquire-release instructions.

arm_v8_2a_fpl6_scalar_ok
ARM target supports options to generate instructions for ARMv8.2-A and
scalar instructions from the FP16 extension. Some multilibs may be incom-
patible with these options.

arm_v8_2a_fpl6_scalar_hw
ARM target supports executing instructions for ARMv8.2-A and scalar instruc-
tions from the FP16 extension. Some multilibs may be incompatible with these
options. Implies arm_v8_2a_fp16_neon_ok.

arm_v8_2a_fpl6_neon_ok
ARM target supports options to generate instructions from ARMv8.2-A with
the FP16 extension. Some multilibs may be incompatible with these options.
Implies arm_v8_2a_fpl6_scalar_ok.

arm_v8_2a_fpl6_neon_hw
ARM target supports executing instructions from ARMv8.2-A with the FP16
extension. Some multilibs may be incompatible with these options. Implies
arm_v8_2a_fpl6_neon_ok and arm_v8_2a_fpl6_scalar_hw.

arm_v8_2a_dotprod_neon_ok
ARM target supports options to generate instructions from ARMv8.2-A with
the Dot Product extension. Some multilibs may be incompatible with these
options.



94 GNU Compiler Collection (GCC) Internals

arm_v8_2a_dotprod_neon_hw
ARM target supports executing instructions from ARMv&8.2-A with the Dot
Product extension. Some multilibs may be incompatible with these options.
Implies arm_v8_2a_dotprod_neon_ok.

arm_fpl6fml_neon_ok
ARM target supports extensions to generate the VFMAL and VFMLS half-precision
floating-point instructions available from ARMv8.2-A and onwards. Some mul-
tilibs may be incompatible with these options.

arm_v8_2a_bf16_neon_ok
ARM target supports options to generate instructions from ARMv8.2-A with
the BFloat16 extension (bf16). Some multilibs may be incompatible with these
options.

arm_v8_2a_i8mm_ok
ARM target supports options to generate instructions from ARMv8.2-A with
the 8-Bit Integer Matrix Multiply extension (i8mm). Some multilibs may be
incompatible with these options.

arm_v8_1m_mve_ok
ARM target supports options to generate instructions from ARMvS&8.1-M with
the M-Profile Vector Extension (MVE). Some multilibs may be incompatible
with these options.

arm_v8_1m_mve_£fp_ok
ARM target supports options to generate instructions from ARMvS&8.1-M with
the Half-precision floating-point instructions (HP), Floating-point Extension
(FP) along with M-Profile Vector Extension (MVE). Some multilibs may be
incompatible with these options.

arm_mve_hw
Test system supports executing MVE instructions.

arm_v8m_main_cde
ARM target supports options to generate instructions from ARMv8-M with the
Custom Datapath Extension (CDE). Some multilibs may be incompatible with
these options.

arm_v8m_main_cde_£fp
ARM target supports options to generate instructions from ARMv8-M with the
Custom Datapath Extension (CDE) and floating-point (VFP). Some multilibs
may be incompatible with these options.

arm_v8_1m_main_cde_mve
ARM target supports options to generate instructions from ARMv8.1-M with
the Custom Datapath Extension (CDE) and M-Profile Vector Extension
(MVE). Some multilibs may be incompatible with these options.

arm_prefer_ldrd_strd
ARM target prefers LDRD and STRD instructions over LDM and STM instructions.



Chapter 7: Testsuites 95

arm_thumbl_movt_ok
ARM target generates Thumb-1 code for -mthumb with MOVW and MOVT instruc-
tions available.

arm_thumbl_cbz_ok
ARM target generates Thumb-1 code for -mthumb with CBZ and CBNZ instruc-
tions available.

arm_divmod_simode
ARM target for which divmod transform is disabled, if it supports hardware
div instruction.

arm_cmse_ok
ARM target supports ARMv8-M Security Extensions, enabled by the -mcmse
option.

arm_coprocl_ok
ARM target supports the following coprocessor instructions: CDP, LDC, STC,
MCR and MRC.

arm_coproc2_ok
ARM target supports all the coprocessor instructions also listed as supported
in [arm_coprocl_ok|, page 95 in addition to the following: CDP2, LDC2, LDC21,
STC2, STC21, MCR2 and MRC2.

arm_coproc3_ok
ARM target supports all the coprocessor instructions also listed as supported
in [arm_coproc2_ok], page 95 in addition the following: MCRR and MRRC.

arm_coproc4_ok
ARM target supports all the coprocessor instructions also listed as supported
in [arm_coproc3_ok], page 95 in addition the following: MCRR2 and MRRC2.

arm_simd32_ok
ARM Target supports options suitable for accessing the SIMD32 intrinsics from
arm_acle.h. Some multilibs may be incompatible with these options.

arm_qgbit_ok
ARM Target supports options suitable for accessing the Q-bit manipulation
intrinsics from arm_acle.h. Some multilibs may be incompatible with these
options.

arm_softfp_ok
ARM target supports the -mfloat-abi=softfp option.

arm_hard_ok
ARM target supports the -mfloat-abi=hard option.

7.2.3.8 A Arch64-specific attributes

aarch64_asm_<ext>_ok
AArch64 assembler supports the architecture extension ext via the .arch_
extension pseudo-op.



96 GNU Compiler Collection (GCC) Internals

aarch64_tiny
AArch64 target which generates instruction sequences for tiny memory model.

aarch64_small
A Arch64 target which generates instruction sequences for small memory model.

aarch64_large
A Arch64 target which generates instruction sequences for large memory model.

aarch64_little_endian
AArch64 target which generates instruction sequences for little endian.

aarch64_big_endian
AArch64 target which generates instruction sequences for big endian.

aarch64_small_fpic
Binutils installed on test system supports relocation types required by -fpic for
A Arch64 small memory model.

aarch64_sve_hw
AArch64 target that is able to generate and execute SVE code (regardless of
whether it does so by default).

aarch64_svel28_hw
aarch64_sve256_hw
aarch64_sve512_hw
aarch64_svel024_hw
aarch64_sve2048_hw
Like aarch64_sve_hw, but also test for an exact hardware vector length.

aarch64_fjcvtzs_hw
AArch64 target that is able to generate and execute armv8.3-a FJCVTZS in-
struction.

7.2.3.9 MIPS-specific attributes

mips64 MIPS target supports 64-bit instructions.
nomips16 MIPS target does not produce MIPS16 code.

mips16_attribute
MIPS target can generate MIPS16 code.

mips_loongson
MIPS target is a Loongson-2E or -2F target using an ABI that supports the
Loongson vector modes.

mips_msa MIPS target supports -mmsa, MIPS SIMD Architecture (MSA).

mips_newabi_large_long_double
MIPS target supports long double larger than double when using the new
ABL

mpaired_single
MIPS target supports -mpaired-single.



Chapter 7: Testsuites 97

7.2.3.10 PowerPC-specific attributes

dfp_hw PowerPC target supports executing hardware DFP instructions.

p8vector_hw
PowerPC target supports executing VSX instructions (ISA 2.07).

powerpc64
Test system supports executing 64-bit instructions.

powerpc_altivec
PowerPC target supports AltiVec.

powerpc_altivec_ok
PowerPC target supports -maltivec.

powerpc_eabi_ok
PowerPC target supports -meabi.

powerpc_elfv2
PowerPC target supports -mabi=elfv2.

powerpc_£fprs
PowerPC target supports floating-point registers.

powerpc_hard_double
PowerPC target supports hardware double-precision floating-point.

powerpc_htm_ok
PowerPC target supports -mhtm

powerpc_p8vector_ok
PowerPC target supports -mpower8-vector

powerpc_popcntb_ok
PowerPC target supports the popcntb instruction, indicating that this target
supports -mcpu=power5.

powerpc_ppu_ok
PowerPC target supports -mcpu=cell.

powerpc_spe
PowerPC target supports PowerPC SPE.

powerpc_spe_nocache
Including the options used to compile this particular test, the PowerPC target
supports PowerPC SPE.

powerpc_spu
PowerPC target supports PowerPC SPU.

powerpc_vsx_ok
PowerPC target supports -mvsx.

powerpc_405_nocache
Including the options used to compile this particular test, the PowerPC target
supports PowerPC 405.



98 GNU Compiler Collection (GCC) Internals

ppc_recip_hw
PowerPC target supports executing reciprocal estimate instructions.

vmx_hw PowerPC target supports executing AltiVec instructions.

vsx_hw PowerPC target supports executing VSX instructions (ISA 2.06).

7.2.3.11 Other hardware attributes

autoincdec
Target supports autoincrement/decrement addressing.

avx Target supports compiling avx instructions.

avx_runtime
Target supports the execution of avx instructions.

avx?2 Target supports compiling avx2 instructions.

avx2_runtime
Target supports the execution of avx2 instructions.

avx512f  Target supports compiling avx512f instructions.

avxb512f_runtime
Target supports the execution of avx512f instructions.

avxbl2vp2intersect
Target supports the execution of avx512vp2intersect instructions.

cell_hw  Test system can execute AltiVec and Cell PPU instructions.

coldfire_fpu
Target uses a ColdFire FPU.

divmod Target supporting hardware divmod insn or divmod libcall.

divmod_simode
Target supporting hardware divmod insn or divmod libcall for SImode.

hard_float
Target supports FPU instructions.

non_strict_align
Target does not require strict alignment.

pie_copyreloc
The x86-64 target linker supports PIE with copy reloc.

rdrand Target supports x86 rdrand instruction.

sqrt_insn
Target has a square root instruction that the compiler can generate.

sse Target supports compiling sse instructions.

sse_runtime
Target supports the execution of sse instructions.



Chapter 7: Testsuites 99

sse2 Target supports compiling sse2 instructions.

sse2_runtime
Target supports the execution of sse2 instructions.

sync_char_short
Target supports atomic operations on char and short.

sync_int_long
Target supports atomic operations on int and long.

ultrasparc_hw
Test environment appears to run executables on a simulator that accepts only
EM_SPARC executables and chokes on EM_SPARC32PLUS or EM_SPARCV9 executa-
bles.

vect_cmdline_needed
Target requires a command line argument to enable a SIMD instruction set.

xorsign  Target supports the xorsign optab expansion.

7.2.3.12 Environment attributes

c The language for the compiler under test is C.
c++ The language for the compiler under test is C++.

c99_runtime
Target provides a full C99 runtime.

correct_iso_cpp_string_wchar_protos
Target string.h and wchar.h headers provide C++ required overloads for
strchr etc. functions.

d_runtime
Target provides the D runtime.

d_runtime_has_std_library
Target provides the D standard library (Phobos).

dummy_wcsftime
Target uses a dummy wcsftime function that always returns zero.

fd_truncate
Target can truncate a file from a file descriptor, as used by
‘libgfortran/io/unix.c:fd_truncate’; i.e. ftruncate or chsize.

fenv Target provides ‘fenv.h’ include file.

fenv_exceptions
Target supports ‘fenv.h’ with all the standard IEEE exceptions and floating-
point exceptions are raised by arithmetic operations.

fileio Target offers such file I/O library functions as fopen, fclose, tmpnam, and
remove. This is a link-time requirement for the presence of the functions in
the library; even if they fail at runtime, the requirement is still regarded as
satisfied.



100 GNU Compiler Collection (GCC) Internals

freestanding
Target is ‘freestanding’ as defined in section 4 of the C99 standard. Effec-
tively, it is a target which supports no extra headers or libraries other than
what is considered essential.

gettimeofday

Target supports gettimeofday.
init_priority

Target supports constructors with initialization priority arguments.
inttypes_types

Target has the basic signed and unsigned types in inttypes.h. This is for

tests that GCC’s notions of these types agree with those in the header, as some
systems have only inttypes.h.

lax_strtofp
Target might have errors of a few ULP in string to floating-point conversion
functions and overflow is not always detected correctly by those functions.

mempcpy  Target provides mempcpy function.
mmap Target supports mmap.
newlib Target supports Newlib.

newlib_nano_io
GCC was configured with --enable-newlib-nano-formatted-io, which re-
duces the code size of Newlib formatted I/O functions.

powl0 Target provides pow10 function.
pthread  Target can compile using pthread.h with no errors or warnings.

pthread_h
Target has pthread.h.

run_expensive_tests
Expensive testcases (usually those that consume excessive amounts of CPU
time) should be run on this target. This can be enabled by setting the GCC_
TEST_RUN_EXPENSIVE environment variable to a non-empty string.

simulator
Test system runs executables on a simulator (i.e. slowly) rather than hardware
(i.e. fast).

signal Target has signal.h.
stabs Target supports the stabs debugging format.

stdint_types
Target has the basic signed and unsigned C types in stdint.h. This will be
obsolete when GCC ensures a working stdint.h for all targets.

stpcpy Target provides stpcpy function.

trampolines
Target supports trampolines.



Chapter 7: Testsuites 101

uclibc Target supports uClibc.

unwrapped
Target does not use a status wrapper.

vxworks_kernel
Target is a VxWorks kernel.

vxworks_rtp
Target is a VxWorks RTP.

wchar Target supports wide characters.

7.2.3.13 Other attributes

automatic_stack_alignment
Target supports automatic stack alignment.

branch_cost
Target supports ‘~branch-cost=N’.

cxa_atexit
Target uses __cxa_atexit.

default_packed
Target has packed layout of structure members by default.

exceptions
Target supports exceptions.

exceptions_enabled
Target supports exceptions and they are enabled in the current testing config-
uration.

fgraphite
Target supports Graphite optimizations.

fixed_point
Target supports fixed-point extension to C.

fopenacc Target supports OpenACC via ‘~fopenacc’.

fopenmp  Target supports OpenMP via ‘-fopenmp’.

fpic Target supports ‘~fpic’ and ‘-fPIC’.

freorder Target supports ‘~freorder-blocks-and-partition’.

fstack_protector
Target supports ‘~fstack-protector’.

gas Target uses GNU as.

gc_sections
Target supports ‘--gc-sections’.

gld Target uses GNU 1d.



102 GNU Compiler Collection (GCC) Internals

keeps_null_pointer_checks
Target keeps null pointer checks, either due to the wuse of
‘~fno-delete-null-pointer-checks’ or hardwired into the target.

1lvm_binutils
Target is using an LLVM assembler and/or linker, instead of GNU Binutils.

lto Compiler has been configured to support link-time optimization (LTO).

lto_incremental
Compiler and linker support link-time optimization relocatable linking with ‘-r
and ‘-flto’ options.

)

naked_functions
Target supports the naked function attribute.

named_sections
Target supports named sections.

natural_alignment_32
Target uses natural alignment (aligned to type size) for types of 32 bits or less.

target_natural_alignment_64
Target uses natural alignment (aligned to type size) for types of 64 bits or less.

noinit Target supports the noinit variable attribute.
nonpic Target does not generate PIC by default.

offload_gcn
Target has been configured for OpenACC/OpenMP offloading on AMD GCN.

pie_enabled
Target generates PIE by default.

pcc_bitfield_type_matters
Target defines PCC_BITFIELD_TYPE_MATTERS.

pe_aligned_commons

Target supports ‘-mpe-aligned-commons’.
pie Target supports ‘-pie’, ‘-fpie’ and ‘-fPIE’.
rdynamic Target supports ‘~rdynamic’.
scalar_all_fma

Target supports all four fused multiply-add optabs for both float and double.
These optabs are: fma_optab, fms_optab, fnma_optab and fnms_optab.

section_anchors
Target supports section anchors.

short_enums
Target defaults to short enums.

stack_size
Target has limited stack size. The stack size limit can be obtained using
the STACK_SIZE macro defined by [dg-add-options feature stack_size],
page 105.



Chapter 7: Testsuites 103

static Target supports ‘~-static’.

static_libgfortran

Target supports statically linking ‘libgfortran’.
string_merging

Target supports merging string constants at link time.

ucn Target supports compiling and assembling UCN.

ucn_nocache
Including the options used to compile this particular test, the target supports
compiling and assembling UCN.

unaligned_stack
Target does not guarantee that its STACK_BOUNDARY is greater than or equal to
the required vector alignment.

vector_alignment_reachable
Vector alignment is reachable for types of 32 bits or less.

vector_alignment_reachable_for_64bit
Vector alignment is reachable for types of 64 bits or less.

wchar_t_charl6_t_compatible
Target supports wchar_t that is compatible with char16_t.

wchar_t_char32_t_compatible
Target supports wchar_t that is compatible with char32_t.

comdat_group
Target uses comdat groups.

indirect_calls
Target supports indirect calls, i.e. calls where the target is not constant.

7.2.3.14 Local to tests in gcc.target/i386

3dnow Target supports compiling 3dnow instructions.
aes Target supports compiling aes instructions.
fmad Target supports compiling fma4 instructions.

mfentry  Target supports the -mfentry option that alters the position of profiling calls
such that they precede the prologue.

ms_hook_prologue
Target supports attribute ms_hook_prologue.

pclmul Target supports compiling pclmul instructions.
sse3 Target supports compiling sse3 instructions.
sse4 Target supports compiling sse4 instructions.
sseda Target supports compiling sse4a instructions.

ssse3 Target supports compiling ssse3 instructions.



104

vaes
vpclmul

xop

GNU Compiler Collection (GCC) Internals

Target supports compiling vaes instructions.
Target supports compiling vpclmul instructions.

Target supports compiling xop instructions.

7.2.3.15 Local to tests in gcc.test-framework

no

yes

Always returns 0.

Always returns 1.

7.2.4 Features for dg-add-options

The supported values of feature for directive dg-add-options are:

arm_£fp

arm_fp_dp

arm_neon

arm_fpl6

__ARM_FP definition. Only ARM targets support this feature, and only then in
certain modes; see the [arm_fp_ok effective target keyword], page 91.

__ARM_FP definition with double-precision support. Only ARM targets support
this feature, and only then in certain modes; see the [arm_fp_dp_ok effective
target keyword], page 91.

NEON support. Only ARM targets support this feature, and only then in
certain modes; see the [arm_neon_ok effective target keyword], page 92.

VFP half-precision floating point support. This does not select the FP16 for-
mat; for that, use [arm_fp16_ieee], page 104 or [arm_fpl6_alternative], page 104

instead. This feature is only supported by ARM targets and then only in certain
modes; see the [arm_fp16_ok effective target keyword], page 92.

arm_fpl6_ieee

ARM IEEE 754-2008 format VFP half-precision floating point support. This
feature is only supported by ARM targets and then only in certain modes; see
the [arm_fp16_ok effective target keyword], page 92.

arm_fpl6_alternative

ARM Alternative format VFP half-precision floating point support. This fea-
ture is only supported by ARM targets and then only in certain modes; see the
[arm_fp16_ok effective target keyword], page 92.

arm_neon_£fpl6

arm_vip3

NEON and half-precision floating point support. Only ARM targets support
this feature, and only then in certain modes; see the [arm_neon_fp16_ok effective
target keyword], page 92.

arm vip3 floating point support; see the [arm_vip3_ok effective target keyword],
page 92.

arm_arch_v8a_hard

Add options for ARMv8-A and the hard-float variant of the AAPCS, if this is
supported by the compiler; see the [arm_arch_v8a_hard_ok|, page 93 effective
target keyword.



Chapter 7: Testsuites 105

arm_v8_la_neon
Add options for ARMv8.1-A with Adv.SIMD support, if this is supported by
the target; see the [arm_v8_la_neon_ok]|, page 93 effective target keyword.

arm_v8_2a_fpl6_scalar
Add options for ARMv8.2-A with scalar FP16 support, if this is supported by
the target; see the [arm_v8_2a_fp16_scalar_ok|, page 93 effective target keyword.

arm_v8_2a_fpl6_neon
Add options for ARMv8.2-A with Adv.SIMD FP16 support, if this is supported
by the target; see the [arm_v8_2a_fpl6_neon_ok|, page 93 effective target key-
word.

arm_v8_2a_dotprod_neon
Add options for ARMv8.2-A with Adv.SIMD Dot Product support, if this is
supported by the target; see the [arm_v8_2a_dotprod_neon_ok], page 93 effective
target keyword.

arm_fpl6fml_neon
Add options to enable generation of the VFMAL and VFMSL instructions, if this
is supported by the target; see the [arm_fpl6fml_neon_ok]|, page 94 effective
target keyword.

bind_pic_locally
Add the target-specific flags needed to enable functions to bind locally when
using pic/PIC passes in the testsuite.

floatn Add the target-specific flags needed to use the _Floatn type.
floatnx  Add the target-specific flags needed to use the _Floatnx type.
ieee Add the target-specific flags needed to enable full IEEE compliance mode.

mips16_attribute
mips16 function attributes. Only MIPS targets support this feature, and only
then in certain modes.

stack_size
Add the flags needed to define macro STACK_SIZE and set it to the stack size
limit associated with the [stack_size effective target], page 102.

sqrt_insn
Add the target-specific flags needed to enable hardware square root instructions,
if any.

tls Add the target-specific flags needed to use thread-local storage.

7.2.5 Variants of dg-require-support
A few of the dg-require directives take arguments.
dg-require-iconv codeset

Skip the test if the target does not support iconv. codeset is the codeset to
convert to.



106 GNU Compiler Collection (GCC) Internals

dg-require-profiling profopt
Skip the test if the target does not support profiling with option profopt.

dg-require-stack-check check
Skip the test if the target does not support the -fstack-check option. If check
is "", support for -fstack-check is checked, for -fstack-check=("check")
otherwise.

dg-require-stack-size size
Skip the test if the target does not support a stack size of size.

dg-require-visibility vis
Skip the test if the target does not support the visibility attribute. If vis
is "" support for visibility("hidden") is checked, for visibility("vis"
otherwise.

The original dg-require directives were defined before there was support for effective-
target keywords. The directives that do not take arguments could be replaced with effective-
target keywords.

dg-require-alias ""
Skip the test if the target does not support the ‘alias’ attribute.

dg-require-ascii-locale ""
Skip the test if the host does not support an ASCII locale.

dg-require-compat-dfp ""
Skip this test unless both compilers in a ‘compat’ testsuite support decimal
floating point.

dg-require-cxa-atexit ""
Skip the test if the target does not support __cxa_atexit. This is equivalent
to dg-require-effective-target cxa_atexit.

dg-require-dl11 ""
Skip the test if the target does not support DLL attributes.

dg-require-dot ""
Skip the test if the host does not have dot.

dg-require-fork ""
Skip the test if the target does not support fork.

dg-require-gc-sections ""
Skip the test if the target’s linker does not support the ——-gc-sections flags.
This is equivalent to dg-require-effective-target gc-sections.

dg-require-host-local ""
Skip the test if the host is remote, rather than the same as the build system.
Some tests are incompatible with DejaGnu’s handling of remote hosts, which
involves copying the source file to the host and compiling it with a relative path
and "-o a.out".

dg-require-mkfifo ""
Skip the test if the target does not support mkfifo.



Chapter 7: Testsuites 107

dg-require-named-sections ""
Skip the test is the target does not support named sections. This is equivalent
to dg-require-effective-target named_sections.

dg-require-weak ""
Skip the test if the target does not support weak symbols.

dg-require-weak-override ""
Skip the test if the target does not support overriding weak symbols.

7.2.6 Commands for use in dg-final
The GCC testsuite defines the following directives to be used within dg-final.

7.2.6.1 Scan a particular file

scan-file filename regexp [{ target/xfail selector }]
Passes if regexp matches text in filename.

scan-file-not filename regexp [{ target/xfail selector }]
Passes if regexp does not match text in filename.

scan-module module regexp [{ target/xfail selector }]
Passes if regexp matches in Fortran module module.

dg-check-dot filename
Passes if filename is a valid ‘. dot’ file (by running dot -Tpng on it, and verifying
the exit code is 0).

7.2.6.2 Scan the assembly output

scan-assembler regex [{ target/xfail selector }]
Passes if regex matches text in the test’s assembler output.

scan-assembler-not regex [{ target/xfail selector }]
Passes if regex does not match text in the test’s assembler output.

scan-assembler-times regex num [{ target/xfail selector }]
Passes if regex is matched exactly num times in the test’s assembler output.

scan-assembler-dem regex [{ target/xfail selector }]
Passes if regex matches text in the test’s demangled assembler output.

scan-assembler-dem-not regex [{ target/xfail selector }]
Passes if regex does not match text in the test’s demangled assembler output.

scan-hidden symbol [{ target/xfail selector }]
Passes if symbol is defined as a hidden symbol in the test’s assembly output.

scan-not-hidden symbol [{ target/xfail selector }]
Passes if symbol is not defined as a hidden symbol in the test’s assembly output.

check-function-bodies prefix terminator [options [{ target/xfail selector }1]
Looks through the source file for comments that give the expected assembly
output for selected functions. Each line of expected output starts with the
prefix string prefix and the expected output for a function as a whole is followed



108

GNU Compiler Collection (GCC) Internals

by a line that starts with the string terminator. Specifying an empty terminator
is equivalent to specifying "*/"’.

options, if specified, is a list of regular expressions, each of which matches a full
command-line option. A non-empty list prevents the test from running unless
all of the given options are present on the command line. This can help if a
source file is compiled both with and without optimization, since it is rarely
useful to check the full function body for unoptimized code.

The first line of the expected output for a function fn has the form:

prefix fn: [{ target/xfail selector }]

Subsequent lines of the expected output also start with prefix. In both cases,
whitespace after prefix is not significant.

The test discards assembly directives such as .cfi_startproc and local label
definitions such as .LFBO from the compiler’s assembly output. It then matches
the result against the expected output for a function as a single regular expres-
sion. This means that later lines can use backslashes to refer back to ‘(...)’
captures on earlier lines. For example:

/* { dg-final { check-function-bodies "*x*" "" "-DCHECK_ASM" } } */
/*

** add_wO_s8_m:

**x mov (z[0-9]+\.b), wO

*x* add zO\.b, pO/m, zO\.b, \1

** ret

*/

svint8_t add_w0_s8_m (...) { ... }
/*

** add_bO_s8_m:

% mov (z[0-9]1+\.b), b0

x* add z1\.b, pO/m, zi\.b, \1

** ret

*/

svint8_t add_b0_s8_m (...) { ... }

checks whether the implementations of add_w0_s8_m and add_b0_s8_m match
the regular expressions given. The test only runs when ‘~-DCHECK_ASM’ is passed
on the command line.

It is possible to create non-capturing multi-line regular expression groups of
the form ‘(albl...)’ by putting the ‘C’, ‘|’ and ‘)’ on separate lines (each still
using prefix). For example:

/*

** cmple_f16_tied:

*x (.

xx fcmge pO\.h, p0/z, z1\.h, z0\.h

*kx |

x* fcmle pO\.h, p0/z, zO\.h, z1\.h

*% )

** ret

*/

svbool_t cmple_f16_tied (...) { ... }



Chapter 7: Testsuites 109

checks whether cmple_f16_tied is implemented by the fcmge instruction fol-
lowed by ret or by the fcmle instruction followed by ret. The test is still a
single regular rexpression.

A line containing just:

prefix ...

stands for zero or more unmatched lines; the whitespace after prefix is again
not significant.

7.2.6.3 Scan optimization dump files

These commands are available for kind of tree, ltrans-tree, offload-tree, rtl,
offload-rtl, ipa, and wpa-ipa.

scan-kind-dump regex suffix [{ target/xfail selector }]
Passes if regex matches text in the dump file with suffix suffix.

scan-kind-dump-not regex suffix [{ target/xfail selector }]
Passes if regex does not match text in the dump file with suffix suffix.

scan-kind-dump-times regex num suffix [{ target/xfail selector }]
Passes if regex is found exactly num times in the dump file with suffix suffix.

scan-kind-dump-dem regex suffix [{ target/xfail selector }]
Passes if regex matches demangled text in the dump file with suffix suffix.

scan-kind-dump-dem-not regex suffix [{ target/xfail selector }]
Passes if regex does not match demangled text in the dump file with suffix
suffix.

7.2.6.4 Check for output files

output-exists [{ target/xfail selector }]
Passes if compiler output file exists.

output-exists-not [{ target/xfail selector }]
Passes if compiler output file does not exist.

scan-symbol regexp [{ target/xfail selector }]
Passes if the pattern is present in the final executable.

scan-symbol-not regexp [{ target/xfail selector }]
Passes if the pattern is absent from the final executable.

7.2.6.5 Checks for gcov tests

run-gcov sourcefile
Check line counts in gcov tests.

run-gcov [branches] [calls] { opts sourcefile }
Check branch and/or call counts, in addition to line counts, in gcov tests.



110 GNU Compiler Collection (GCC) Internals

7.2.6.6 Clean up generated test files

Usually the test-framework removes files that were generated during testing. If a testcase,
for example, uses any dumping mechanism to inspect a passes dump file, the testsuite
recognized the dump option passed to the tool and schedules a final cleanup to remove
these files.

There are, however, following additional cleanup directives that can be used to annotate
a testcase "manually".

cleanup-coverage-files
Removes coverage data files generated for this test.

cleanup-modules "list-of-extra-modules"
Removes Fortran module files generated for this test, excluding the module
names listed in keep-modules. Cleaning up module files is usually done au-
tomatically by the testsuite by looking at the source files and removing the
modules after the test has been executed.

module MoD1

end module MoD1

module Mod2

end module Mod2

module moD3

end module moD3

module mod4

end module mod4

! { dg-final { cleanup-modules "modl mod2" } } ! redundant
! { dg-final { keep-modules "mod3 mod4" } }

keep-modules "list-of-modules-not-to-delete"
Whitespace separated list of module names that should not be deleted by
cleanup-modules. If the list of modules is empty, all modules defined in this file
are kept.

module maybe_unneeded

end module maybe_unneeded

module keepl

end module keepl

module keep2

end module keep2

! { dg-final { keep-modules "keepl keep2" } } ! just keep these two
! { dg-final { keep-modules "" } } ! keep all

dg-keep-saved-temps "list-of-suffixes-not-to-delete"
Whitespace separated list of suffixes that should not be deleted automatically
in a testcase that uses ‘-save-temps’.
// { dg-options "-save-temps -fpch-preprocess -I." }
int main() { return 0; }
// { dg-keep-saved-temps ".s" } ! just keep assembler file

// { dg-keep-saved-temps ".s" ".i" } ! ... and .i
// { dg-keep-saved-temps ".ii" ".o" } ! or just .ii and .o

cleanup-profile-file
Removes profiling files generated for this test.



Chapter 7: Testsuites 111

7.3 Ada Language Testsuites

The Ada testsuite includes executable tests from the ACATS testsuite, publicly available
at http://www.ada-auth.org/acats.html.

These tests are integrated in the GCC testsuite in the ‘ada/acats’ directory, and enabled
automatically when running make check, assuming the Ada language has been enabled when
configuring GCC.

You can also run the Ada testsuite independently, using make check-ada, or run a subset
of the tests by specifying which chapter to run, e.g.:
$ make check-ada CHAPTERS="c3 c9"
The tests are organized by directory, each directory corresponding to a chapter of the
Ada Reference Manual. So for example, ‘c9’ corresponds to chapter 9, which deals with
tasking features of the language.

The tests are run using two sh scripts: ‘run_acats’ and ‘run_all.sh’. To run the
tests using a simulator or a cross target, see the small customization section at the top of
‘run_all.sh’.

These tests are run using the build tree: they can be run without doing a make install.

7.4 C Language Testsuites
GCC contains the following C language testsuites, in the ‘gcc/testsuite’ directory:

‘gcc.dg’ This contains tests of particular features of the C compiler, using the more
modern ‘dg’ harness. Correctness tests for various compiler features should go
here if possible.

Magic comments determine whether the file is preprocessed, compiled, linked
or run. In these tests, error and warning message texts are compared against
expected texts or regular expressions given in comments. These tests are run
with the options ‘~ansi -pedantic’ unless other options are given in the test.
Except as noted below they are not run with multiple optimization options.

gcc.dg/compat’
This subdirectory contains tests for binary compatibility using
‘lib/compat.exp’, which in turn uses the language-independent support (see
Section 7.8 [Support for testing binary compatibility]|, page 115).

gcc.dg/cpp’
This subdirectory contains tests of the preprocessor.

gcc.dg/debug’
This subdirectory contains tests for debug formats. Tests in this subdirectory
are run for each debug format that the compiler supports.

gcc.dg/format’
This subdirectory contains tests of the ‘-Wformat’ format checking. Tests in
this directory are run with and without ‘~-DWIDE’.

gcc.dg/noncompile’
This subdirectory contains tests of code that should not compile and does not
need any special compilation options. They are run with multiple optimization
options, since sometimes invalid code crashes the compiler with optimization.


http://www.ada-auth.org/acats.html

112

gcc

gcc.

gcc

gcc.

gcc.

gcc.

gcc.

gcc

GNU Compiler Collection (GCC) Internals

.dg/special’

FIXME: describe this.

c-torture’

This contains particular code fragments which have historically broken easily.
These tests are run with multiple optimization options, so tests for features
which only break at some optimization levels belong here. This also contains
tests to check that certain optimizations occur. It might be worthwhile to
separate the correctness tests cleanly from the code quality tests, but it hasn’t
been done yet.

.c-torture/compat’

FIXME: describe this.
This directory should probably not be used for new tests.

c-torture/compile’

This testsuite contains test cases that should compile, but do not need to link
or run. These test cases are compiled with several different combinations of
optimization options. All warnings are disabled for these test cases, so this
directory is not suitable if you wish to test for the presence or absence of
compiler warnings. While special options can be set, and tests disabled on
specific platforms, by the use of ‘.x’ files, mostly these test cases should not
contain platform dependencies. FIXME: discuss how defines such as STACK_
SIZE are used.

c-torture/execute’

This testsuite contains test cases that should compile, link and run; otherwise
the same comments as for ‘gcc.c-torture/compile’ apply.

c-torture/execute/ieee’

This contains tests which are specific to IEEE floating point.

c-torture/unsorted’

FIXME: describe this.
This directory should probably not be used for new tests.

.misc-tests’

This directory contains C tests that require special handling. Some of these
tests have individual expect files, and others share special-purpose expect files:

‘bprobx*.c’

Test ‘~fbranch-probabilities’ using ‘gcc.misc-tests/bprob.exp’ ||

which in turn uses the generic, language-independent framework
(see Section 7.7 [Support for testing profile-directed optimizations],
page 114).

‘gecovk.c’ Test gcov output using ‘gcov.exp’, which in turn uses the
language-independent support (see Section 7.6 [Support for testing
gcov|, page 113).

‘1386-pf-*.c’
Test  i386-specific  support  for data  prefetch  using
‘i386-prefetch.exp’.



Chapter 7: Testsuites 113

‘gcc.test-framework’
‘dg-*.c’  Test the testsuite itself using ‘gcc. test-framework/test-framework.exp’.Jj

FIXME: merge in ‘testsuite/README.gcc’ and discuss the format of test cases and
magic comments more.

7.5 Support for testing link-time optimizations

Tests for link-time optimizations usually require multiple source files that are compiled
separately, perhaps with different sets of options. There are several special-purpose test
directives used for these tests.

{ dg-1to-do do-what-keyword }
do-what-keyword specifies how the test is compiled and whether it is executed.
It is one of:

assemble Compile with ‘-=c’ to produce a relocatable object file.
link Compile, assemble, and link to produce an executable file.

run Produce and run an executable file, which is expected to return an
exit code of 0.

The default is assemble. That can be overridden for a set of tests by redefining
dg-do-what-default within the .exp file for those tests.

Unlike dg-do, dg-1to-do does not support an optional ‘target’ or ‘xfail’ list.
Use dg-skip-if, dg-xfail-if, or dg-xfail-run-if.

{ dg-1to-options { { options } [{ options }] } [{ target selector }]}
This directive provides a list of one or more sets of compiler options to override
LTO_OPTIONS. Each test will be compiled and run with each of these sets of
options.

{ dg-extra-1ld-options options [{ target selector }]1}
This directive adds options to the linker options used.

{ dg-suppress-1d-options options [{ target selector }]1}
This directive removes options from the set of linker options used.

7.6 Support for testing gcov

Language-independent support for testing gcov, and for checking that branch profiling
produces expected values, is provided by the expect file ‘1ib/gcov.exp’. gcov tests also
rely on procedures in ‘1ib/gcc-dg.exp’ to compile and run the test program. A typical
gecov test contains the following DejaGnu commands within comments:

{ dg-options "--coverage" }

{ dg-do run { target native } }

{ dg-final { run-gcov sourcefile } }

Checks of gcov output can include line counts, branch percentages, and call return per-
centages. All of these checks are requested via commands that appear in comments in the
test’s source file. Commands to check line counts are processed by default. Commands to
check branch percentages and call return percentages are processed if the run-gcov com-
mand has arguments branches or calls, respectively. For example, the following specifies
checking both, as well as passing ‘-b’ to gcov:



114 GNU Compiler Collection (GCC) Internals

{ dg-final { run-gcov branches calls { -b sourcefile } } }

A line count command appears within a comment on the source line that is expected to
get the specified count and has the form count (cnt). A test should only check line counts
for lines that will get the same count for any architecture.

Commands to check branch percentages (branch) and call return percentages (returns)
are very similar to each other. A beginning command appears on or before the first of a
range of lines that will report the percentage, and the ending command follows that range
of lines. The beginning command can include a list of percentages, all of which are expected
to be found within the range. A range is terminated by the next command of the same kind.
A command branch(end) or returns(end) marks the end of a range without starting a
new one. For example:

if (i > 10 && j > i && j < 20) /* branch(27 50 75) */
/* branch(end) */
foo (i, j);

For a call return percentage, the value specified is the percentage of calls reported to
return. For a branch percentage, the value is either the expected percentage or 100 mi-
nus that value, since the direction of a branch can differ depending on the target or the
optimization level.

Not all branches and calls need to be checked. A test should not check for branches that
might be optimized away or replaced with predicated instructions. Don’t check for calls
inserted by the compiler or ones that might be inlined or optimized away.

A single test can check for combinations of line counts, branch percentages, and call
return percentages. The command to check a line count must appear on the line that will
report that count, but commands to check branch percentages and call return percentages
can bracket the lines that report them.

7.7 Support for testing profile-directed optimizations

The file ‘profopt.exp’ provides language-independent support for checking correct execu-
tion of a test built with profile-directed optimization. This testing requires that a test
program be built and executed twice. The first time it is compiled to generate profile data,
and the second time it is compiled to use the data that was generated during the first
execution. The second execution is to verify that the test produces the expected results.

To check that the optimization actually generated better code, a test can be built and
run a third time with normal optimizations to verify that the performance is better with the
profile-directed optimizations. ‘profopt.exp’ has the beginnings of this kind of support.

‘profopt.exp’ provides generic support for profile-directed optimizations. Each set of
tests that uses it provides information about a specific optimization:

tool tool being tested, e.g., gcc

profile_option
options used to generate profile data

feedback_option
options used to optimize using that profile data

prof_ext suffix of profile data files



Chapter 7: Testsuites 115

PROFOPT_OPTIONS
list of options with which to run each test, similar to the lists for torture tests

{ dg-final-generate { local-directive } }
This directive is similar to dg-final, but the local-directive is run after the
generation of profile data.

{ dg-final-use { local-directive } }
The local-directive is run after the profile data have been used.

7.8 Support for testing binary compatibility

The file ‘compat . exp’ provides language-independent support for binary compatibility test-
ing. It supports testing interoperability of two compilers that follow the same ABI, or of
multiple sets of compiler options that should not affect binary compatibility. It is intended
to be used for testsuites that complement ABI testsuites.

A test supported by this framework has three parts, each in a separate source file: a main
program and two pieces that interact with each other to split up the functionality being
tested.

‘testname_main.suffix’
Contains the main program, which calls a function in file ‘testname_x.suffix’.

‘testname_x.suffix’
Contains at least one call to a function in ‘testname_y.suffix’.

‘testname_y.suffix’
Shares data with, or gets arguments from, ‘testname_x.suffix’.

Within each test, the main program and one functional piece are compiled by the GCC
under test. The other piece can be compiled by an alternate compiler. If no alternate
compiler is specified, then all three source files are all compiled by the GCC under test.
You can specify pairs of sets of compiler options. The first element of such a pair specifies
options used with the GCC under test, and the second element of the pair specifies options
used with the alternate compiler. Each test is compiled with each pair of options.

‘compat . exp’ defines default pairs of compiler options. These can be overridden by defin-

ing the environment variable COMPAT_OPTIONS as:
COMPAT_OPTIONS="[list [list {tst1} {alt1}]
...[list {tstn} {altn}]]"

where tsti and alti are lists of options, with tsti used by the compiler under test and alti
used by the alternate compiler. For example, with [1ist [1ist {-g -00} {-03}] [list
{-fpic} {-fPIC -02}]1, the test is first built with ‘~g -00’ by the compiler under test and
with ‘=03’ by the alternate compiler. The test is built a second time using ‘-fpic’ by the
compiler under test and ‘-fPIC -02’ by the alternate compiler.

An alternate compiler is specified by defining an environment variable to be the full
pathname of an installed compiler; for C define ALT_CC_UNDER_TEST, and for C++ define
ALT_CXX_UNDER_TEST. These will be written to the ‘site.exp’ file used by DejaGnu. The
default is to build each test with the compiler under test using the first of each pair of
compiler options from COMPAT_OPTIONS. When ALT_CC_UNDER_TEST or ALT_CXX_UNDER_
TEST is same, each test is built using the compiler under test but with combinations of the
options from COMPAT_OPTIONS.



116 GNU Compiler Collection (GCC) Internals

To run only the C++ compatibility suite using the compiler under test and another version
of GCC using specific compiler options, do the following from ‘objdir/gcc’:

rm site.exp

make -k \
ALT_CXX_UNDER_TEST=${alt_prefix}/bin/g++ \
COMPAT_OPTIONS="1lists as shown above" \
check-c++ \
RUNTESTFLAGS="compat .exp"

A test that fails when the source files are compiled with different compilers, but passes
when the files are compiled with the same compiler, demonstrates incompatibility of the
generated code or runtime support. A test that fails for the alternate compiler but passes
for the compiler under test probably tests for a bug that was fixed in the compiler under
test but is present in the alternate compiler.

The binary compatibility tests support a small number of test framework commands that
appear within comments in a test file.

dg-require-*
These commands can be used in ‘testname_main.suffix’ to skip the test if
specific support is not available on the target.

dg-options
The specified options are used for compiling this particular source file, ap-
pended to the options from COMPAT_OPTIONS. When this command appears in
‘testname_main.suffix’ the options are also used to link the test program.

dg-xfail-if
This command can be used in a secondary source file to specify that compilation
is expected to fail for particular options on particular targets.

7.9 Support for torture testing using multiple options

Throughout the compiler testsuite there are several directories whose tests are run
multiple times, each with a different set of options. These are known as torture tests.
‘lib/torture-options.exp’ defines procedures to set up these lists:

torture-init
Initialize use of torture lists.

set-torture-options
Set lists of torture options to use for tests with and without loops. Optionally
combine a set of torture options with a set of other options, as is done with
Objective-C runtime options.

torture-finish
Finalize use of torture lists.

The ‘. exp’ file for a set of tests that use torture options must include calls to these three
procedures if:
e [t calls gcc-dg-runtest and overrides DG_TORTURE_OPTIONS.

o It calls ${tool}-torture or ${tool}-torture-execute, where tool is c, fortran, or
objc.



Chapter 7: Testsuites 117

e It calls dg-pch.

It is not necessary for a ‘. exp’ file that calls gcc-dg-runtest to call the torture procedures
if the tests should use the list in DG_-TORTURE_OPTIONS defined in ‘gcc-dg.exp’.

Most uses of torture options can override the default lists by defin-
ing TORTURE_OPTIONS or add to the default list by defining ADDI-
TIONAL_TORTURE_OPTIONS. Define these in a ‘.dejagnurc’ file or add
them to the ‘site.exp’ file; for example

set ADDITIONAL_TORTURE_OPTIONS [list \

{ -02 -ftree-loop-linear } \
{ -02 -fpeel-loops } 1]

7.10 Support for testing GIMPLE passes

As of gce 7, C functions can be tagged with __GIMPLE to indicate that the function body
will be GIMPLE, rather than C. The compiler requires the option ‘-fgimple’ to enable this
functionality. For example:

/* { dg-do compile } */
/* { dg-options "-0 -fgimple" } */

void __GIMPLE (startwith ("dse2")) foo ()
{

int a;

bb_2:
if (a > 4)
goto bb_3;
else
goto bb_4;

bb_3:
a_2 = 10;
goto bb_5;

bb_4:
a_3

20;

bb_5:
__PHI (bb_3: a_2, bb_4: a_3);
a_l + 4;

(O

_1
_4

return;
}

The startwith argument indicates at which pass to begin.

Use the dump modifier -gimple (e.g. ‘-fdump-tree-all-gimple’) to make tree dumps
more closely follow the format accepted by the GIMPLE parser.

Example DejaGnu tests of GIMPLE can be seen in the source tree at
‘gcc/testsuite/gec.dg/gimplefe-*.c .

The __GIMPLE parser is integrated with the C tokenizer and preprocessor, so it should be
possible to use macros to build out test coverage.



118 GNU Compiler Collection (GCC) Internals

7.11 Support for testing RTL passes

As of gce 7, C functions can be tagged with __RTL to indicate that the function body will
be RTL, rather than C. For example:
double __RTL (startwith ("ira")) test (struct foo *f, const struct bar *b)

{
(function "test"
[...snip; various directives go in here...]
) ;; function "test"
}

The startwith argument indicates at which pass to begin.
The parser expects the RTL body to be in the format emitted by this dumping function:

DEBUG_FUNCTION void
print_rtx_function (FILE *outfile, function *fn, bool compact);

when "compact" is true. So you can capture RTL in the correct format from the debugger

using:
(gdb) print_rtx_function (stderr, cfun, true);

and copy and paste the output into the body of the C function.

Example DejaGnu tests of RTL can be seen in the source tree under
‘gcc/testsuite/gec.dg/rtl’.

The __RTL parser is not integrated with the C tokenizer or preprocessor, and works simply
by reading the relevant lines within the braces. In particular, the RTL body must be on
separate lines from the enclosing braces, and the preprocessor is not usable within it.



Chapter 8: Option specification files 119

8 Option specification files

Most GCC command-line options are described by special option definition files, the names
of which conventionally end in .opt. This chapter describes the format of these files.

8.1 Option file format

Option files are a simple list of records in which each field occupies its own line and in which
the records themselves are separated by blank lines. Comments may appear on their own
line anywhere within the file and are preceded by semicolons. Whitespace is allowed before
the semicolon.

The files can contain the following types of record:

e A language definition record. These records have two fields: the string ‘Language’ and
the name of the language. Once a language has been declared in this way, it can be
used as an option property. See Section 8.2 [Option properties|, page 121.

e A target specific save record to save additional information. These records have two
fields: the string ‘TargetSave’, and a declaration type to go in the c1_target_option
structure.

e A variable record to define a variable used to store option information. These records
have two fields: the string ‘Variable’; and a declaration of the type and name of the
variable, optionally with an initializer (but without any trailing ‘;’). These records may
be used for variables used for many options where declaring the initializer in a single
option definition record, or duplicating it in many records, would be inappropriate, or
for variables set in option handlers rather than referenced by Var properties.

e A variable record to define a variable used to store option information. These records
have two fields: the string ‘TargetVariable’, and a declaration of the type and
name of the variable, optionally with an initializer (but without any trailing ‘;’).
‘TargetVariable’ is a combination of ‘Variable’ and ‘TargetSave’ records in that the
variable is defined in the gcc_options structure, but these variables are also stored in
the cl_target_option structure. The variables are saved in the target save code and
restored in the target restore code.

e A variable record to record any additional files that the ‘options.h’ file should include.
This is useful to provide enumeration or structure definitions needed for target variables.
These records have two fields: the string ‘HeaderInclude’ and the name of the include
file.

e A wvariable record to record any additional files that the ‘options.c’ or
‘options-save.c’ file should include. This is useful to provide inline functions needed
for target variables and/or #ifdef sequences to properly set up the initialization.
These records have two fields: the string ‘SourceInclude’ and the name of the include
file.

e An enumeration record to define a set of strings that may be used as arguments to an
option or options. These records have three fields: the string ‘Enum’, a space-separated
list of properties and help text used to describe the set of strings in ‘~-help’ output.
Properties use the same format as option properties; the following are valid:



120

GNU Compiler Collection (GCC) Internals

Name (name)
This property is required; name must be a name (suitable for use in C
identifiers) used to identify the set of strings in Enum option properties.

Type (type)
This property is required; type is the C type for variables set by options
using this enumeration together with Var.

UnknownError (message)
The message message will be used as an error message if the argument is
invalid; for enumerations without UnknownError, a generic error message
is used. message should contain a single ‘%qs’ format, which will be used
to format the invalid argument.

An enumeration value record to define one of the strings in a set given in an ‘Enum’
record. These records have two fields: the string ‘EnumValue’ and a space-separated
list of properties. Properties use the same format as option properties; the following
are valid:

Enum (name)
This property is required; name says which ‘Enum’ record this ‘EnumValue’
record corresponds to.

String(string)
This property is required; string is the string option argument being de-
scribed by this record.

Value(value)
This property is required; it says what value (representable as int) should
be used for the given string.

Canonical
This property is optional. If present, it says the present string is the
canonical one among all those with the given value. Other strings yielding
that value will be mapped to this one so specs do not need to handle them.

DriverOnly
This property is optional. If present, the present string will only be ac-
cepted by the driver. This is used for cases such as ‘-march=native’ that
are processed by the driver so that ‘gcc -v’ shows how the options chosen
depended on the system on which the compiler was run.

An option definition record. These records have the following fields:

w»

1. the name of the option, with the leading removed

2. a space-separated list of option properties (see Section 8.2 [Option properties],
page 121)

3. the help text to use for ‘--help’ (omitted if the second field contains the
Undocumented property).

By default, all options beginning with “f”, “W” or “m” are implicitly assumed to take a
“no-” form. This form should not be listed separately. If an option beginning with one
of these letters does not have a “no-” form, you can use the RejectNegative property
to reject it.



Chapter 8: Option specification files 121

The help text is automatically line-wrapped before being displayed. Normally the name
of the option is printed on the left-hand side of the output and the help text is printed
on the right. However, if the help text contains a tab character, the text to the left of
the tab is used instead of the option’s name and the text to the right of the tab forms
the help text. This allows you to elaborate on what type of argument the option takes.

e A target mask record. These records have one field of the form ‘Mask(x)’. The options-
processing script will automatically allocate a bit in target_flags (see Section 18.3
[Run-time Target], page 486) for each mask name x and set the macro MASK_x to the
appropriate bitmask. It will also declare a TARGET _x macro that has the value 1 when
bit MASK_x is set and 0 otherwise.

They are primarily intended to declare target masks that are not associated with user
options, either because these masks represent internal switches or because the options
are not available on all configurations and yet the masks always need to be defined.

8.2 Option properties

The second field of an option record can specify any of the following properties. When an
option takes an argument, it is enclosed in parentheses following the option property name.
The parser that handles option files is quite simplistic, and will be tricked by any nested
parentheses within the argument text itself; in this case, the entire option argument can be
wrapped in curly braces within the parentheses to demarcate it, e.g.:

Condition({defined (USE_CYGWIN_LIBSTDCXX_WRAPPERS)})

Common The option is available for all languages and targets.
Target The option is available for all languages but is target-specific.
Driver The option is handled by the compiler driver using code not shared with the

compilers proper (‘ccl’ etc.).
language The option is available when compiling for the given language.

It is possible to specify several different languages for the same option. Each lan-
guage must have been declared by an earlier Language record. See Section 8.1
[Option file format], page 119.

RejectDriver
The option is only handled by the compilers proper (‘cc1’ etc.) and should not
be accepted by the driver.

RejectNegative
The option does not have a “no-” form. All options beginning with “f”, “W?”
or “m” are assumed to have a “no-” form unless this property is used.

Negative (othername)

The option will turn off another option othername, which is the option name
with the leading “-” removed. This chain action will propagate through the
Negative property of the option to be turned off. The driver will prune op-
tions, removing those that are turned off by some later option. This pruning
is not done for options with Joined or JoinedOrMissing properties, unless
the options have either RejectNegative property or the Negative property
mentions an option other than itself.



122

Joined
Separate

GNU Compiler Collection (GCC) Internals

As a consequence, if you have a group of mutually-exclusive options, their
Negative properties should form a circular chain. For example, if options ‘-a’,
‘-b’ and ‘-¢’ are mutually exclusive, their respective Negative properties should
be ‘Negative(b)’, ‘Negative(c)’ and ‘Negative(a)’.

The option takes a mandatory argument. Joined indicates that the option and
argument can be included in the same argv entry (as with -mflush-func=name,
for example). Separate indicates that the option and argument can be separate
argv entries (as with -o). An option is allowed to have both of these properties.

JoinedOrMissing

The option takes an optional argument. If the argument is given, it will be part
of the same argv entry as the option itself.

This property cannot be used alongside Joined or Separate.

MissingArgError (message)

Args(n)

Ulnteger

For an option marked Joined or Separate, the message message will be used
as an error message if the mandatory argument is missing; for options without
MissingArgError, a generic error message is used. message should contain a
single ‘%qgs’ format, which will be used to format the name of the option passed.

For an option marked Separate, indicate that it takes n arguments. The default
is 1.

The option’s argument is a non-negative integer consisting of either decimal
or hexadecimal digits interpreted as int. Hexadecimal integers may optionally
start with the 0x or 0X prefix. The option parser validates and converts the
argument, before passing it to the relevant option handler. UInteger should
also be used with options like ~-falign-loops where both -falign-loops and
-falign-loops=n are supported to make sure the saved options are given a
full integer. Positive values of the argument in excess of INT_MAX wrap around
Zero.

Host_Wide_Int

The option’s argument is a non-negative integer consisting of either decimal or
hexadecimal digits interpreted as the widest integer type on the host. As with
an UInteger argument, hexadecimal integers may optionally start with the 0x
or OX prefix. The option parser validates and converts the argument before
passing it to the relevant option handler. Host_Wide_Int should be used with
options that need to accept very large values. Positive values of the argument
in excess of HOST_WIDE_INT_M1U are assigned HOST_WIDE_INT_M1U.

IntegerRange(n, m)

ByteSize

The options’s arguments are integers of type int. The option’s parser validates
that the value of an option integer argument is within the closed range [n, m].

A property applicable only to UInteger or Host_Wide_Int arguments. The
option’s integer argument is interpreted as if in infinite precision using satu-
ration arithmetic in the corresponding type. The argument may be followed
by a ‘byte-size’ suffix designating a multiple of bytes such as kB and KiB for



Chapter 8: Option specification files 123

kilobyte and kibibyte, respectively, MB and MiB for megabyte and mebibyte, GB
and GiB for gigabyte and gigibyte, and so on. ByteSize should be used for
with options that take a very large argument representing a size in bytes, such
as ‘-Wlarger-than=".

ToLower  The option’s argument should be converted to lowercase as part of putting it in
canonical form, and before comparing with the strings indicated by any Enum
property.

NoDriverArg
For an option marked Separate, the option only takes an argument in the com-
piler proper, not in the driver. This is for compatibility with existing options
that are used both directly and via ‘-Wp,’; new options should not have this
property.

Var(var) The state of this option should be stored in variable var (actually a macro for
global_options.x_var). The way that the state is stored depends on the type
of option:

WarnRemoved

The option is removed and every usage of such option will result in a warning.
We use it option backward compatibility.

Var (var, set)

The option controls an integer variable var and is active when var equals set.
The option parser will set var to set when the positive form of the option is
used and !set when the “no-” form is used.

var is declared in the same way as for the single-argument form described above.

e If the option uses the Mask or InverseMask properties, var is the integer
variable that contains the mask.

e If the option is a normal on/off switch, var is an integer variable that is
nonzero when the option is enabled. The options parser will set the variable
to 1 when the positive form of the option is used and 0 when the “no-”
form is used.

e If the option takes an argument and has the UInteger property, var is an
integer variable that stores the value of the argument.

e If the option takes an argument and has the Enum property, var is a variable
(type given in the Type property of the ‘Enum’ record whose Name property
has the same argument as the Enum property of this option) that stores the
value of the argument.

e If the option has the Defer property, var is a pointer to a
VEC(cl_deferred_option,heap) that stores the option for later
processing. (var is declared with type void * and needs to be cast to
VEC(cl_deferred_option,heap) before use.)

e Otherwise, if the option takes an argument, var is a pointer to the argument
string. The pointer will be null if the argument is optional and wasn’t given.

The option-processing script will usually zero-initialize var. You can modify
this behavior using Init.



124

GNU Compiler Collection (GCC) Internals

Init(value)

Mask (name)

The variable specified by the Var property should be statically initialized to
value. If more than one option using the same variable specifies Init, all must
specify the same initializer.

The option is associated with a bit in the target_flags variable (see
Section 18.3 [Run-time Target], page 486) and is active when that bit is set.
You may also specify Var to select a variable other than target_flags.

The options-processing script will automatically allocate a unique bit for the
option. If the option is attached to ‘target_flags’, the script will set the
macro MASK_name to the appropriate bitmask. It will also declare a TARGET_
name macro that has the value 1 when the option is active and 0 otherwise. If
you use Var to attach the option to a different variable, the bitmask macro with
be called OPTION_MASK_name.

InverseMask (othername)
InverseMask(othername, thisname)

Enum(name)

Defer

Alias(opt)

The option is the inverse of another option that has the Mask (othername) prop-
erty. If thisname is given, the options-processing script will declare a TARGET_
thisname macro that is 1 when the option is active and 0 otherwise.

The option’s argument is a string from the set of strings associated with the
corresponding ‘Enum’ record. The string is checked and converted to the integer
specified in the corresponding ‘EnumValue’ record before being passed to option
handlers.

The option should be stored in a vector, specified with Var, for later processing.

Alias(opt, arg)
Alias(opt, posarg, negarg)

The option is an alias for ‘-opt’ (or the negative form of that option, depending
on NegativeAlias). In the first form, any argument passed to the alias is
considered to be passed to ‘—opt’, and ‘-opt’ is considered to be negated if the
alias is used in negated form. In the second form, the alias may not be negated
or have an argument, and posarg is considered to be passed as an argument to
‘~opt’. In the third form, the alias may not have an argument, if the alias is
used in the positive form then posarg is considered to be passed to ‘-opt’, and
if the alias is used in the negative form then negarg is considered to be passed
to ‘—opt’.

Aliases should not specify Var or Mask or UInteger. Aliases should normally
specify the same languages as the target of the alias; the flags on the target
will be used to determine any diagnostic for use of an option for the wrong
language, while those on the alias will be used to identify what command-line
text is the option and what text is any argument to that option.

When an Alias definition is used for an option, driver specs do not need to
handle it and no ‘OPT_’ enumeration value is defined for it; only the canonical
form of the option will be seen in those places.



Chapter 8: Option specification files 125

NegativeAlias
For an option marked with Alias(opt), the option is considered to be an alias
for the positive form of ‘-opt’ if negated and for the negative form of ‘-opt’ if
not negated. NegativeAlias may not be used with the forms of Alias taking
more than one argument.

Ignore This option is ignored apart from printing any warning specified using Warn.
The option will not be seen by specs and no ‘OPT_’ enumeration value is defined
for it.

SeparateAlias

For an option marked with Joined, Separate and Alias, the option only acts
as an alias when passed a separate argument; with a joined argument it acts as
a normal option, with an ‘OPT_’ enumeration value. This is for compatibility
with the Java ‘-d’ option and should not be used for new options.

Warn(message)
If this option is used, output the warning message. message is a format string,
either taking a single operand with a ‘%qgs’ format which is the option name, or
not taking any operands, which is passed to the ‘warning’ function. If an alias
is marked Warn, the target of the alias must not also be marked Warn.

Report The state of the option should be printed by ‘~fverbose-asm’.

Warning  This is a warning option and should be shown as such in ‘--help’ output. This
flag does not currently affect anything other than ‘~-help’.

Optimization
This is an optimization option. It should be shown as such in ‘--help’ output,
and any associated variable named using Var should be saved and restored when
the optimization level is changed with optimize attributes.

PerFunction
This is an option that can be overridden on a per-function basis. Optimization
implies PerFunction, but options that do not affect executable code generation
may use this flag instead, so that the option is not taken into account in ways
that might affect executable code generation.

Param This is an option that is a parameter.

Undocumented
The option is deliberately missing documentation and should not be included
in the ‘--help’ output.

Condition(cond)
The option should only be accepted if preprocessor condition cond is true. Note
that any C declarations associated with the option will be present even if cond
is false; cond simply controls whether the option is accepted and whether it is
printed in the ‘--help’ output.

Save Build the cl_target_option structure to hold a copy of the option, add the
functions cl_target_option_save and cl_target_option_restore to save
and restore the options.



126 GNU Compiler Collection (GCC) Internals

SetByCombined

The option may also be set by a combined option such as ‘~-ffast-math’. This
causes the gcc_options struct to have a field frontend_set_name, where name
is the name of the field holding the value of this option (without the leading
x_). This gives the front end a way to indicate that the value has been set
explicitly and should not be changed by the combined option. For example,
some front ends use this to prevent ‘-ffast-math’ and ‘-~fno-fast-math’ from
changing the value of ‘~fmath-errno’ for languages that do not use errno.

EnabledBy (opt)

EnabledBy (opt || opt2)

EnabledBy (opt && opt2)
If not explicitly set, the option is set to the value of ‘-opt’; multiple options can
be given, separated by | |. The third form using && specifies that the option is
only set if both opt and opt2 are set. The options opt and opt2 must have the
Common property; otherwise, use LangEnabledBy.

LangEnabledBy(language, opt)

LangEnabledBy(language, opt, posarg, negarg)
When compiling for the given language, the option is set to the value of ‘-opt’,
if not explicitly set. opt can be also a list of | | separated options. In the second
form, if opt is used in the positive form then posarg is considered to be passed
to the option, and if opt is used in the negative form then negarg is considered
to be passed to the option. It is possible to specify several different languages.
Each language must have been declared by an earlier Language record. See
Section 8.1 [Option file format], page 119.

NoDWARFRecord
The option is omitted from the producer string written by
‘-grecord-gcc-switches’.

PchlIgnore
Even if this is a target option, this option will not be recorded / compared to
determine if a precompiled header file matches.

CPP(var) The state of this option should be kept in sync with the preprocessor option
var. If this property is set, then properties Var and Init must be set as well.

CppReason (CPP_W_Enum)
This warning option corresponds to cpplib.h warning reason code
CPP_W_Enum. This should only be used for warning options of the C-family
front-ends.



Chapter 9: Passes and Files of the Compiler 127

9 Passes and Files of the Compiler

This chapter is dedicated to giving an overview of the optimization and code generation
passes of the compiler. In the process, it describes some of the language front end interface,
though this description is no where near complete.

9.1 Parsing pass

The language front end is invoked only once, via lang_hooks.parse_file, to parse the
entire input. The language front end may use any intermediate language representation
deemed appropriate. The C front end uses GENERIC trees (see Chapter 11 [GENERIC],
page 161), plus a double handful of language specific tree codes defined in ‘c-common.def’.
The Fortran front end uses a completely different private representation.

At some point the front end must translate the representation used in the front end to a
representation understood by the language-independent portions of the compiler. Current
practice takes one of two forms. The C front end manually invokes the gimplifier (see
Chapter 12 [GIMPLE], page 209) on each function, and uses the gimplifier callbacks to
convert the language-specific tree nodes directly to GIMPLE before passing the function off
to be compiled. The Fortran front end converts from a private representation to GENERIC,
which is later lowered to GIMPLE when the function is compiled. Which route to choose
probably depends on how well GENERIC (plus extensions) can be made to match up with
the source language and necessary parsing data structures.

BUG: Gimplification must occur before nested function lowering, and nested function
lowering must be done by the front end before passing the data off to cgraph.

TODO: Cgraph should control nested function lowering. It would only be invoked when
it is certain that the outer-most function is used.

TODO: Cgraph needs a gimplify_function callback. It should be invoked when (1) it is
certain that the function is used, (2) warning flags specified by the user require some amount
of compilation in order to honor, (3) the language indicates that semantic analysis is not
complete until gimplification occurs. Hum. . . this sounds overly complicated. Perhaps we
should just have the front end gimplify always; in most cases it’s only one function call.

The front end needs to pass all function definitions and top level declarations off to the
middle-end so that they can be compiled and emitted to the object file. For a simple
procedural language, it is usually most convenient to do this as each top level declaration
or definition is seen. There is also a distinction to be made between generating functional
code and generating complete debug information. The only thing that is absolutely required
for functional code is that function and data definitions be passed to the middle-end. For
complete debug information, function, data and type declarations should all be passed as
well.

In any case, the front end needs each complete top-level function or data declaration,
and each data definition should be passed to rest_of_decl_compilation. Each complete
type definition should be passed to rest_of_type_compilation. Each function definition
should be passed to cgraph_finalize_function.

TODO: I know rest_of_compilation currently has all sorts of RTL generation semantics.
I plan to move all code generation bits (both Tree and RTL) to compile_function. Should
we hide cgraph from the front ends and move back to rest_of_compilation as the official



128 GNU Compiler Collection (GCC) Internals

interface? Possibly we should rename all three interfaces such that the names match in
some meaningful way and that is more descriptive than "rest_of".

The middle-end will, at its option, emit the function and data definitions immediately or
queue them for later processing.

9.2 Gimplification pass

Gimplification is a whimsical term for the process of converting the intermediate represen-
tation of a function into the GIMPLE language (see Chapter 12 [GIMPLE], page 209). The
term stuck, and so words like “gimplification”, “gimplify”, “gimplifier” and the like are
sprinkled throughout this section of code.

While a front end may certainly choose to generate GIMPLE directly if it chooses, this
can be a moderately complex process unless the intermediate language used by the front
end is already fairly simple. Usually it is easier to generate GENERIC trees plus extensions
and let the language-independent gimplifier do most of the work.

The main entry point to this pass is gimplify_function_tree located in ‘gimplify.c’.
From here we process the entire function gimplifying each statement in turn. The main
workhorse for this pass is gimplify_expr. Approximately everything passes through here
at least once, and it is from here that we invoke the lang_hooks.gimplify_expr callback.

The callback should examine the expression in question and return GS_UNHANDLED if the
expression is not a language specific construct that requires attention. Otherwise it should
alter the expression in some way to such that forward progress is made toward producing
valid GIMPLE. If the callback is certain that the transformation is complete and the
expression is valid GIMPLE, it should return GS_ALL_DONE. Otherwise it should return
GS_OK, which will cause the expression to be processed again. If the callback encounters
an error during the transformation (because the front end is relying on the gimplification
process to finish semantic checks), it should return GS_ERROR.

9.3 Pass manager

The pass manager is located in ‘passes.c’, ‘tree-optimize.c’ and ‘tree-pass.h’. It
processes passes as described in ‘passes.def’. Its job is to run all of the individual passes
in the correct order, and take care of standard bookkeeping that applies to every pass.

The theory of operation is that each pass defines a structure that represents everything
we need to know about that pass—when it should be run, how it should be run, what
intermediate language form or on-the-side data structures it needs. We register the pass to
be run in some particular order, and the pass manager arranges for everything to happen
in the correct order.

The actuality doesn’t completely live up to the theory at present. Command-line switches
and timevar_id_t enumerations must still be defined elsewhere. The pass manager vali-
dates constraints but does not attempt to (re-)generate data structures or lower intermediate
language form based on the requirements of the next pass. Nevertheless, what is present is
useful, and a far sight better than nothing at all.

Each pass should have a unique name. Each pass may have its own dump file (for GCC
debugging purposes). Passes with a name starting with a star do not dump anything.
Sometimes passes are supposed to share a dump file / option name. To still give these



Chapter 9: Passes and Files of the Compiler 129

unique names, you can use a prefix that is delimited by a space from the part that is used
for the dump file / option name. E.g. When the pass name is "ud dce", the name used for
dump file/options is "dce".

TODO: describe the global variables set up by the pass manager, and a brief description
of how a new pass should use it. I need to look at what info RTL passes use first. . .

9.4 Inter-procedural optimization passes

The inter-procedural optimization (IPA) passes use call graph information to perform trans-
formations across function boundaries. IPA is a critical part of link-time optimization (LTO)
and whole-program (WHOPR) optimization, and these passes are structured with the needs
of LTO and WHOPR in mind by dividing their operations into stages. For detailed discus-
sion of the LTO/WHOPR IPA pass stages and interfaces, see Section 25.3 [IPA], page 696.

The following briefly describes the inter-procedural optimization (IPA) passes, which
are split into small IPA passes, regular IPA passes, and late IPA passes, according to the
LTO/WHOPR processing model.

9.4.1 Small IPA passes

A small IPA pass is a pass derived from simple_ipa_opt_pass. As described in Section 25.3
[IPA], page 696, it does everything at once and defines only the Ezecute stage. During this
stage it accesses and modifies the function bodies. No generate_summary, read_summary,
or write_summary hooks are defined.

e [PA free lang data

This pass frees resources that are used by the front end but are not needed once it is
done. It is located in ‘tree.c’ and is described by pass_ipa_free_lang_data.

e IPA function and variable visibility
This is a local function pass handling visibilities of all symbols. This happens be-
fore LTO streaming, so ‘~fwhole-program’ should be ignored at this level. It is lo-
cated in ‘ipa-visibility.c’ and is described by pass_ipa_function_and_variable_
visibility.

e [PA remove symbols
This pass performs reachability analysis and reclaims all unreachable nodes. It is
located in ‘passes.c’ and is described by pass_ipa_remove_symbols.

e IPA OpenACC

This is a pass group for OpenACC processing. It is located in ‘tree-ssa-loop.c’ and
is described by pass_ipa_oacc.

e [PA points-to analysis
This is a tree-based points-to analysis pass. The idea behind this analyzer is to generate
set constraints from the program, then solve the resulting constraints in order to gen-
erate the points-to sets. It is located in ‘tree-ssa-structalias.c’ and is described
by pass_ipa_pta.

e TPA OpenACC kernels

This is a pass group for processing OpenACC kernels regions. It is a subpass of the IPA
OpenACC pass group that runs on offloaded functions containing OpenACC kernels
loops. It is located in ‘tree-ssa-loop.c’ and is described by pass_ipa_oacc_kernels.



130 GNU Compiler Collection (GCC) Internals

e Target clone
This is a pass for parsing functions with multiple target attributes. It is located in
‘multiple_target.c’ and is described by pass_target_clone.

e [PA auto profile
This pass uses AutoFDO profiling data to annotate the control flow graph. It is located
in ‘auto-profile.c’ and is described by pass_ipa_auto_profile.

e [PA tree profile

This pass does profiling for all functions in the call graph. It calculates branch prob-
abilities and basic block execution counts. It is located in ‘tree-profile.c’ and is
described by pass_ipa_tree_profile.

e IPA free function summary

This pass is a small IPA pass when argument small_p is true. It releases inline function
summaries and call summaries. It is located in ‘ipa-fnsummary.c’ and is described by
pass_ipa_free_free_fn_summary.

e [PA increase alignment

This pass increases the alignment of global arrays to improve vectorization. It is located
in ‘tree-vectorizer.c’ and is described by pass_ipa_increase_alignment.

e [PA transactional memory

This pass is for transactional memory support. It is located in ‘trans-mem.c’ and is
described by pass_ipa_tm.

e IPA lower emulated TLS

This pass lowers thread-local storage (TLS) operations to emulation functions provided
by libgcc. It is located in ‘tree-emutls.c’ and is described by pass_ipa_lower_
emutls.

9.4.2 Regular IPA passes

A regular IPA pass is a pass derived from ipa_opt_pass_d that is executed in WHOPR
compilation. Regular IPA passes may have summary hooks implemented in any of the
LGEN, WPA or LTRANS stages (see Section 25.3 [IPA], page 696).

e IPA whole program visibility

This pass performs various optimizations involving symbol visibility with
‘~fwhole-program’, including symbol privatization, discovering local functions, and
dismantling comdat groups. It is located in ‘ipa-visibility.c’ and is described by
pass_ipa_whole_program_visibility.

e IPA profile
The IPA profile pass propagates profiling frequencies across the call graph. It is located
in ‘ipa-profile.c’ and is described by pass_ipa_profile.

e [PA identical code folding

This is the inter-procedural identical code folding pass. The goal of this transformation
is to discover functions and read-only variables that have exactly the same semantics.
It is located in ‘ipa-icf.c’ and is described by pass_ipa_icf.



Chapter 9: Passes and Files of the Compiler 131

e IPA devirtualization

This pass performs speculative devirtualization based on the type inheritance graph.
When a polymorphic call has only one likely target in the unit, it is turned into a
speculative call. It is located in ‘ipa-devirt.c’ and is described by pass_ipa_devirt.

e TPA constant propagation

The goal of this pass is to discover functions that are always invoked with some argu-
ments with the same known constant values and to modify the functions accordingly.
It can also do partial specialization and type-based devirtualization. It is located in
‘ipa-cp.c’ and is described by pass_ipa_cp.

e [PA scalar replacement of aggregates

This pass can replace an aggregate parameter with a set of other parameters represent-
ing part of the original, turning those passed by reference into new ones which pass
the value directly. It also removes unused function return values and unused function
parameters. This pass is located in ‘ipa-sra.c’ and is described by pass_ipa_sra.

e [PA constructor/destructor merge

This pass merges multiple constructors and destructors for static objects into single
functions. It’s only run at LTO time unless the target doesn’t support constructors
and destructors natively. The pass is located in ‘ipa.c’ and is described by pass_ipa_
cdtor_merge.

e [PA HSA

This pass is part of the GCC support for HSA (Heterogeneous System Architecture) ac-
celerators. It is responsible for creation of HSA clones and emitting HSAIL instructions
for them. It is located in ‘ipa-hsa.c’ and is described by pass_ipa_hsa.

e [PA function summary

This pass provides function analysis for inter-procedural passes. It collects estimates of
function body size, execution time, and frame size for each function. It also estimates
information about function calls: call statement size, time and how often the parameters
change for each call. It is located in ‘ipa-fnsummary.c’ and is described by pass_ipa_
fn_summary.

e IPA inline

The TPA inline pass handles function inlining with whole-program knowledge. Small
functions that are candidates for inlining are ordered in increasing badness, bounded
by unit growth parameters. Unreachable functions are removed from the call graph.
Functions called once and not exported from the unit are inlined. This pass is located
in ‘ipa-inline.c’ and is described by pass_ipa_inline.

e [PA pure/const analysis

This pass marks functions as being either const (TREE_READONLY) or pure (DECL_PURE_
P). The per-function information is produced by pure_const_generate_summary, then
the global information is computed by performing a transitive closure over the call
graph. It is located in ‘ipa-pure-const.c’ and is described by pass_ipa_pure_const.

e IPA free function summary

This pass is a regular IPA pass when argument small_p is false. It releases inline
function summaries and call summaries. It is located in ‘ipa-fnsummary.c’ and is
described by pass_ipa_free_fn_summary.



132 GNU Compiler Collection (GCC) Internals

o IPA reference

This pass gathers information about how variables whose scope is confined to the
compilation unit are used. It is located in ‘ipa-reference.c’ and is described by
pass_ipa_reference.

e [PA single use

This pass checks whether variables are used by a single function. It is located in ‘ipa.c’
and is described by pass_ipa_single_use.

e IPA comdats
This pass looks for static symbols that are used exclusively within one comdat group,

and moves them into that comdat group. It is located in ‘ipa-comdats.c’ and is
described by pass_ipa_comdats.

9.4.3 Late IPA passes

Late IPA passes are simple IPA passes executed after the regular passes. In WHOPR mode
the passes are executed after partitioning and thus see just parts of the compiled unit.

e Materialize all clones
Once all functions from compilation unit are in memory, produce all clones and update
all calls. It is located in ‘ipa.c’ and is described by pass_materialize_all_clones.
e IPA points-to analysis
Points-to analysis; this is the same as the points-to-analysis pass run with the small
IPA passes (see Section 9.4.1 [Small IPA passes|, page 129).
e OpenMP simd clone

This is the OpenMP constructs’ SIMD clone pass. It creates the appropriate
SIMD clones for functions tagged as elemental SIMD functions. It is located in
‘omp-simd-clone.c’ and is described by pass_omp_simd_clone.

9.5 Tree SSA passes

The following briefly describes the Tree optimization passes that are run after gimplification
and what source files they are located in.

e Remove useless statements

This pass is an extremely simple sweep across the gimple code in which we identify
obviously dead code and remove it. Here we do things like simplify if statements
with constant conditions, remove exception handling constructs surrounding code that
obviously cannot throw, remove lexical bindings that contain no variables, and other
assorted simplistic cleanups. The idea is to get rid of the obvious stuff quickly rather
than wait until later when it’s more work to get rid of it. This pass is located in
‘tree-cfg.c’ and described by pass_remove_useless_stmts.

e OpenMP lowering

If OpenMP generation (‘-fopenmp’) is enabled, this pass lowers OpenMP constructs
into GIMPLE.

Lowering of OpenMP constructs involves creating replacement expressions for local
variables that have been mapped using data sharing clauses, exposing the control flow
of most synchronization directives and adding region markers to facilitate the creation



Chapter 9: Passes and Files of the Compiler 133

of the control flow graph. The pass is located in ‘omp-low.c’ and is described by
pass_lower_omp.

e OpenMP expansion

If OpenMP generation (‘-fopenmp’) is enabled, this pass expands parallel regions
into their own functions to be invoked by the thread library. The pass is located
in ‘omp-low.c’ and is described by pass_expand_omp.

e Lower control flow

This pass flattens if statements (COND_EXPR) and moves lexical bindings (BIND_EXPR)
out of line. After this pass, all if statements will have exactly two goto statements in
its then and else arms. Lexical binding information for each statement will be found
in TREE_BLOCK rather than being inferred from its position under a BIND_EXPR. This
pass is found in ‘gimple-low.c’ and is described by pass_lower_cf.

e Lower exception handling control flow

This pass decomposes high-level exception handling constructs (TRY_FINALLY_EXPR and
TRY_CATCH_EXPR) into a form that explicitly represents the control flow involved. After
this pass, lookup_stmt_eh_region will return a non-negative number for any state-
ment that may have EH control flow semantics; examine tree_can_throw_internal
or tree_can_throw_external for exact semantics. Exact control flow may be ex-
tracted from foreach_reachable_handler. The EH region nesting tree is defined in
‘except.h’ and built in ‘except.c’. The lowering pass itself is in ‘tree-eh.c’ and is
described by pass_lower_eh.

e Build the control flow graph

This pass decomposes a function into basic blocks and creates all of the edges that
connect them. It is located in ‘tree-cfg.c’ and is described by pass_build_cfg.

e Find all referenced variables

This pass walks the entire function and collects an array of all variables referenced
in the function, referenced_vars. The index at which a variable is found in the
array is used as a UID for the variable within this function. This data is needed by
the SSA rewriting routines. The pass is located in ‘tree-dfa.c’ and is described by
pass_referenced_vars.

e Enter static single assignment form

This pass rewrites the function such that it is in SSA form. After this pass, all is_
gimple_reg variables will be referenced by SSA_NAME, and all occurrences of other
variables will be annotated with VDEFS and VUSES; PHI nodes will have been inserted
as necessary for each basic block. This pass is located in ‘tree-ssa.c’ and is described
by pass_build_ssa.

e Warn for uninitialized variables

This pass scans the function for uses of SSA_NAMEs that are fed by default definition.
For non-parameter variables, such uses are uninitialized. The pass is run twice, before
and after optimization (if turned on). In the first pass we only warn for uses that
are positively uninitialized; in the second pass we warn for uses that are possibly
uninitialized. The pass is located in ‘tree-ssa.c’ and is defined by pass_early_
warn_uninitialized and pass_late_warn_uninitialized.



134

GNU Compiler Collection (GCC) Internals

Dead code elimination

This pass scans the function for statements without side effects whose result is unused.
It does not do memory life analysis, so any value that is stored in memory is considered
used. The pass is run multiple times throughout the optimization process. It is located
in ‘tree-ssa-dce.c’ and is described by pass_dce.

Dominator optimizations

This pass performs trivial dominator-based copy and constant propagation, expression
simplification, and jump threading. It is run multiple times throughout the optimiza-
tion process. It is located in ‘tree-ssa-dom.c’ and is described by pass_dominator.

Forward propagation of single-use variables

This pass attempts to remove redundant computation by substituting variables that are
used once into the expression that uses them and seeing if the result can be simplified.
It is located in ‘tree-ssa-forwprop.c’ and is described by pass_forwprop.

Copy Renaming

This pass attempts to change the name of compiler temporaries involved in copy oper-
ations such that SSA->normal can coalesce the copy away. When compiler temporaries
are copies of user variables, it also renames the compiler temporary to the user variable
resulting in better use of user symbols. It is located in ‘tree-ssa-copyrename.c’ and
is described by pass_copyrename.

PHI node optimizations

This pass recognizes forms of PHI inputs that can be represented as conditional expres-
sions and rewrites them into straight line code. It is located in ‘tree-ssa-phiopt.c’
and is described by pass_phiopt.

May-alias optimization

This pass performs a flow sensitive SSA-based points-to analysis. The resulting may-
alias, must-alias, and escape analysis information is used to promote variables from
in-memory addressable objects to non-aliased variables that can be renamed into SSA
form. We also update the VDEF/VUSE memory tags for non-renameable aggregates so
that we get fewer false kills. The pass is located in ‘tree-ssa-alias.c’ and is described
by pass_may_alias.

Interprocedural points-to information is located in ‘tree-ssa-structalias.c’ and de-
scribed by pass_ipa_pta.

Profiling

This pass instruments the function in order to collect runtime block and value profiling
data. Such data may be fed back into the compiler on a subsequent run so as to
allow optimization based on expected execution frequencies. The pass is located in
‘tree-profile.c’ and is described by pass_ipa_tree_profile.

Static profile estimation

This pass implements series of heuristics to guess propababilities of branches. The
resulting predictions are turned into edge profile by propagating branches across the
control flow graphs. The pass is located in ‘tree-profile.c’ and is described by
pass_profile.



Chapter 9: Passes and Files of the Compiler 135

e Lower complex arithmetic

This pass rewrites complex arithmetic operations into their component scalar arith-
metic operations. The pass is located in ‘tree-complex.c’ and is described by pass_
lower_complex.

e Scalar replacement of aggregates

This pass rewrites suitable non-aliased local aggregate variables into a set of scalar
variables. The resulting scalar variables are rewritten into SSA form, which allows
subsequent optimization passes to do a significantly better job with them. The pass is
located in ‘tree-sra.c’ and is described by pass_sra.

e Dead store elimination

This pass eliminates stores to memory that are subsequently overwritten by another
store, without any intervening loads. The pass is located in ‘tree-ssa-dse.c’ and is
described by pass_dse.

e Tail recursion elimination

This pass transforms tail recursion into a loop. It is located in ‘tree-tailcall.c’ and
is described by pass_tail_recursion.

e Forward store motion

This pass sinks stores and assignments down the flowgraph closer to their use point.
The pass is located in ‘tree-ssa-sink.c’ and is described by pass_sink_code.

e Partial redundancy elimination

This pass eliminates partially redundant computations, as well as performing load
motion. The pass is located in ‘tree-ssa-pre.c’ and is described by pass_pre.

Just before partial redundancy elimination, if ‘-funsafe-math-optimizations’ is on,
GCC tries to convert divisions to multiplications by the reciprocal. The pass is located
in ‘tree-ssa-math-opts.c’ and is described by pass_cse_reciprocal.

e Full redundancy elimination

This is a simpler form of PRE that only eliminates redundancies that occur on all
paths. It is located in ‘tree-ssa-pre.c’ and described by pass_fre.

e Loop optimization

The main driver of the pass is placed in ‘tree-ssa-loop.c’ and described by pass_
loop.

The optimizations performed by this pass are:

Loop invariant motion. This pass moves only invariants that would be hard to handle
on RTL level (function calls, operations that expand to nontrivial sequences of insns).
With ‘~-funswitch-loops’ it also moves operands of conditions that are invariant out of
the loop, so that we can use just trivial invariantness analysis in loop unswitching. The
pass also includes store motion. The pass is implemented in ‘tree-ssa-loop-im.c’.

Canonical induction variable creation. This pass creates a simple counter for number
of iterations of the loop and replaces the exit condition of the loop using it, in case
when a complicated analysis is necessary to determine the number of iterations. Later
optimizations then may determine the number easily. The pass is implemented in
‘tree-ssa-loop-ivcanon.c’.



136

GNU Compiler Collection (GCC) Internals

Induction variable optimizations. This pass performs standard induction variable op-
timizations, including strength reduction, induction variable merging and induction
variable elimination. The pass is implemented in ‘tree-ssa-loop-ivopts.c’.

Loop unswitching. This pass moves the conditional jumps that are invariant out of the
loops. To achieve this, a duplicate of the loop is created for each possible outcome of
conditional jump(s). The pass is implemented in ‘tree-ssa-loop-unswitch.c’.

Loop splitting. If a loop contains a conditional statement that is always true for one
part of the iteration space and false for the other this pass splits the loop into two, one
dealing with one side the other only with the other, thereby removing one inner-loop
conditional. The pass is implemented in ‘tree-ssa-loop-split.c’.

The optimizations also use various utility functions contained in ‘tree-ssa-loop-manip.

‘cfgloop.c’, ‘cfgloopanal.c’ and ‘cfgloopmanip.c’.

Vectorization. This pass transforms loops to operate on vector types instead of
scalar types. Data parallelism across loop iterations is exploited to group data
elements from consecutive iterations into a vector and operate on them in parallel.
Depending on available target support the loop is conceptually unrolled by a factor
VF (vectorization factor), which is the number of elements operated upon in parallel
in each iteration, and the VF copies of each scalar operation are fused to form a
vector operation. Additional loop transformations such as peeling and versioning
may take place to align the number of iterations, and to align the memory accesses
in the loop. The pass is implemented in ‘tree-vectorizer.c’ (the main driver),
‘tree-vect-loop.c’ and ‘tree-vect-loop-manip.c’ (loop specific parts and general
loop utilities), ‘tree-vect-slp’ (loop-aware SLP functionality), ‘tree-vect-stmts.c’
and ‘tree-vect-data-refs.c’. Analysis of data references is in ‘tree-data-ref.c’.
SLP Vectorization. This pass performs vectorization of straight-line code. The pass
is implemented in ‘tree-vectorizer.c’ (the main driver), ‘tree-vect-slp.c’,
‘tree-vect-stmts.c’ and ‘tree-vect-data-refs.c’.

Autoparallelization. This pass splits the loop iteration space to run into several threads.
The pass is implemented in ‘tree-parloops.c’.

Graphite is a loop transformation framework based on the polyhedral model. Graphite
stands for Gimple Represented as Polyhedra. The internals of this infrastructure are
documented in http://gcc.gnu.org/wiki/Graphite. The passes working on this
representation are implemented in the various ‘graphite-*’ files.

Tree level if-conversion for vectorizer

This pass applies if-conversion to simple loops to help vectorizer. We identify if con-
vertible loops, if-convert statements and merge basic blocks in one big block. The idea
is to present loop in such form so that vectorizer can have one to one mapping between
statements and available vector operations. This pass is located in ‘tree-if-conv.c’
and is described by pass_if_conversion.

Conditional constant propagation

This pass relaxes a lattice of values in order to identify those that must be constant
even in the presence of conditional branches. The pass is located in ‘tree-ssa-ccp.c’
and is described by pass_ccp.

A related pass that works on memory loads and stores, and not just register values, is
located in ‘tree-ssa-ccp.c’ and described by pass_store_ccp.


http://gcc.gnu.org/wiki/Graphite

Chapter 9: Passes and Files of the Compiler 137

e Conditional copy propagation

This is similar to constant propagation but the lattice of values is the “copy-of” relation.
It eliminates redundant copies from the code. The pass is located in ‘tree-ssa-copy.c’
and described by pass_copy_prop.

A related pass that works on memory copies, and not just register copies, is located in
‘tree-ssa-copy.c’ and described by pass_store_copy_prop.

e Value range propagation

This transformation is similar to constant propagation but instead of propagating sin-
gle constant values, it propagates known value ranges. The implementation is based on
Patterson’s range propagation algorithm (Accurate Static Branch Prediction by Value
Range Propagation, J. R. C. Patterson, PLDI ’95). In contrast to Patterson’s algo-
rithm, this implementation does not propagate branch probabilities nor it uses more
than a single range per SSA name. This means that the current implementation cannot
be used for branch prediction (though adapting it would not be difficult). The pass is
located in ‘tree-vrp.c’ and is described by pass_vrp.

e Folding built-in functions

This pass simplifies built-in functions, as applicable, with constant arguments or with
inferable string lengths. It is located in ‘tree-ssa-ccp.c’ and is described by pass_
fold_builtins.

e Split critical edges

This pass identifies critical edges and inserts empty basic blocks such that the edge
is no longer critical. The pass is located in ‘tree-cfg.c’ and is described by pass_
split_crit_edges.

e Control dependence dead code elimination

This pass is a stronger form of dead code elimination that can eliminate unnecessary
control flow statements. It is located in ‘tree-ssa-dce.c’ and is described by pass_
cd_dce.

e Tail call elimination

This pass identifies function calls that may be rewritten into jumps. No code trans-
formation is actually applied here, but the data and control flow problem is solved.
The code transformation requires target support, and so is delayed until RTL. In the
meantime CALL_EXPR_TAILCALL is set indicating the possibility. The pass is located in
‘tree-tailcall.c’ and is described by pass_tail_calls. The RTL transformation
is handled by fixup_tail_calls in ‘calls.c’.

e Warn for function return without value

For non-void functions, this pass locates return statements that do not specify a value
and issues a warning. Such a statement may have been injected by falling off the end
of the function. This pass is run last so that we have as much time as possible to prove
that the statement is not reachable. It is located in ‘tree-cfg.c’ and is described by
pass_warn_function_return.

e Leave static single assignment form

This pass rewrites the function such that it is in normal form. At the same time, we
eliminate as many single-use temporaries as possible, so the intermediate language is



138

GNU Compiler Collection (GCC) Internals

no longer GIMPLE, but GENERIC. The pass is located in ‘tree-outof-ssa.c’ and
is described by pass_del_ssa.

Merge PHI nodes that feed into one another

This is part of the CFG cleanup passes. It attempts to join PHI nodes from a
forwarder CFG block into another block with PHI nodes. The pass is located in
‘tree-cfgcleanup.c’ and is described by pass_merge_phi.

Return value optimization

If a function always returns the same local variable, and that local variable is an
aggregate type, then the variable is replaced with the return value for the function
(i.e., the function’s DECL_RESULT). This is equivalent to the C++ named return
value optimization applied to GIMPLE. The pass is located in ‘tree-nrv.c’ and is
described by pass_nrv.

Return slot optimization

If a function returns a memory object and is called as var = foo(), this pass tries to
change the call so that the address of var is sent to the caller to avoid an extra memory
copy. This pass is located in tree-nrv.c and is described by pass_return_slot.

Optimize calls to __builtin_object_size

This is a propagation pass similar to CCP that tries to remove calls to __builtin_
object_size when the size of the object can be computed at compile-time. This pass
is located in ‘tree-object-size.c’ and is described by pass_object_sizes.

Loop invariant motion

This pass removes expensive loop-invariant computations out of loops. The pass is
located in ‘tree-ssa-loop.c’ and described by pass_lim.

Loop nest optimizations

This is a family of loop transformations that works on loop nests. It includes loop
interchange, scaling, skewing and reversal and they are all geared to the optimiza-
tion of data locality in array traversals and the removal of dependencies that hamper
optimizations such as loop parallelization and vectorization. The pass is located in
‘tree-loop-linear.c’ and described by pass_linear_transform.

Removal of empty loops

This pass removes loops with no code in them. The pass is located in
‘tree-ssa-loop-ivcanon.c’ and described by pass_empty_loop.

Unrolling of small loops

This pass completely unrolls loops with few iterations. The pass is located in
‘tree-ssa-loop-ivcanon.c’ and described by pass_complete_unroll.

Predictive commoning

This pass makes the code reuse the computations from the previous iterations of the
loops, especially loads and stores to memory. It does so by storing the values of these
computations to a bank of temporary variables that are rotated at the end of loop. To
avoid the need for this rotation, the loop is then unrolled and the copies of the loop
body are rewritten to use the appropriate version of the temporary variable. This pass
is located in ‘tree-predcom.c’ and described by pass_predcom.



Chapter 9: Passes and Files of the Compiler 139

e Array prefetching

This pass issues prefetch instructions for array references inside loops. The pass is
located in ‘tree-ssa-loop-prefetch.c’ and described by pass_loop_prefetch.

e Reassociation

This pass rewrites arithmetic expressions to enable optimizations that operate
on them, like redundancy elimination and vectorization. The pass is located in
‘tree-ssa-reassoc.c’ and described by pass_reassoc.

e Optimization of stdarg functions

This pass tries to avoid the saving of register arguments into the stack on entry to
stdarg functions. If the function doesn’t use any va_start macros, no registers need
to be saved. If va_start macros are used, the va_list variables don’t escape the
function, it is only necessary to save registers that will be used in va_arg macros.
For instance, if va_arg is only used with integral types in the function, floating point
registers don’t need to be saved. This pass is located in tree-stdarg.c and described
by pass_stdarg.

9.6 RTL passes

The following briefly describes the RTL generation and optimization passes that are run
after the Tree optimization passes.

e RTL generation

The source files for RTL generation include ‘stmt.c’, ‘calls.c’, ‘expr.c’, ‘explow.c’,
‘expmed.c’, ‘function.c’, ‘optabs.c’ and ‘emit-rtl.c’. Also, the file ‘insn-emit.c’,
generated from the machine description by the program genemit, is used in this pass.
The header file ‘expr.h’ is used for communication within this pass.

The header files ‘insn-flags.h’ and ‘insn-codes.h’, generated from the machine
description by the programs genflags and gencodes, tell this pass which standard
names are available for use and which patterns correspond to them.

e Generation of exception landing pads

This pass generates the glue that handles communication between the exception han-
dling library routines and the exception handlers within the function. Entry points in
the function that are invoked by the exception handling library are called landing pads.
The code for this pass is located in ‘except.c’.

e Control flow graph cleanup

This pass removes unreachable code, simplifies jumps to next, jumps to jump, jumps
across jumps, etc. The pass is run multiple times. For historical reasons, it is occasion-
ally referred to as the “jump optimization pass”. The bulk of the code for this pass is
in ‘cfgcleanup.c’, and there are support routines in ‘cfgrtl.c’ and ‘jump.c’.

e Forward propagation of single-def values

This pass attempts to remove redundant computation by substituting variables that
come from a single definition, and seeing if the result can be simplified. It performs
copy propagation and addressing mode selection. The pass is run twice, with values
being propagated into loops only on the second run. The code is located in ‘fwprop.c’.



140

GNU Compiler Collection (GCC) Internals

Common subexpression elimination

This pass removes redundant computation within basic blocks, and optimizes address-
ing modes based on cost. The pass is run twice. The code for this pass is located in
‘cse.c’.

Global common subexpression elimination

This pass performs two different types of GCSE depending on whether you are opti-
mizing for size or not (LCM based GCSE tends to increase code size for a gain in speed,
while Morel-Renvoise based GCSE does not). When optimizing for size, GCSE is done
using Morel-Renvoise Partial Redundancy Elimination, with the exception that it does
not try to move invariants out of loops—that is left to the loop optimization pass. If
MR PRE GCSE is done, code hoisting (aka unification) is also done, as well as load
motion. If you are optimizing for speed, LCM (lazy code motion) based GCSE is done.
LCM is based on the work of Knoop, Ruthing, and Steffen. LCM based GCSE also does
loop invariant code motion. We also perform load and store motion when optimizing
for speed. Regardless of which type of GCSE is used, the GCSE pass also performs
global constant and copy propagation. The source file for this pass is ‘gcse.c’, and the
LCM routines are in ‘lcm.c’.

Loop optimization

This pass performs several loop related optimizations. The source files ‘cfgloopanal.c’
and ‘cfgloopmanip.c’ contain generic loop analysis and manipulation code. Initializa-
tion and finalization of loop structures is handled by ‘loop-init.c’. A loop invariant
motion pass is implemented in ‘loop-invariant.c’. Basic block level optimizations—
unrolling, and peeling loops— are implemented in ‘loop-unroll.c’. Replacing of
the exit condition of loops by special machine-dependent instructions is handled by
‘loop-doloop.c’.

Jump bypassing

This pass is an aggressive form of GCSE that transforms the control flow graph of a
function by propagating constants into conditional branch instructions. The source file
for this pass is ‘gcse.c’.

If conversion

This pass attempts to replace conditional branches and surrounding assignments with
arithmetic, boolean value producing comparison instructions, and conditional move
instructions. In the very last invocation after reload/LRA, it will generate predicated
instructions when supported by the target. The code is located in ‘ifcvt.c’.

Web construction

This pass splits independent uses of each pseudo-register. This can improve effect of
the other transformation, such as CSE or register allocation. The code for this pass is
located in ‘web.c’.

Instruction combination

This pass attempts to combine groups of two or three instructions that are related by
data flow into single instructions. It combines the RTL expressions for the instructions
by substitution, simplifies the result using algebra, and then attempts to match the
result against the machine description. The code is located in ‘combine.c’.



Chapter 9: Passes and Files of the Compiler 141

e Mode switching optimization

This pass looks for instructions that require the processor to be in a specific “mode”
and minimizes the number of mode changes required to satisfy all users. What these
modes are, and what they apply to are completely target-specific. The code for this
pass is located in ‘mode-switching.c’.

e Modulo scheduling

This pass looks at innermost loops and reorders their instructions by overlapping differ-
ent iterations. Modulo scheduling is performed immediately before instruction schedul-
ing. The code for this pass is located in ‘modulo-sched.c’.

e Instruction scheduling

This pass looks for instructions whose output will not be available by the time that it
is used in subsequent instructions. Memory loads and floating point instructions often
have this behavior on RISC machines. It re-orders instructions within a basic block to
try to separate the definition and use of items that otherwise would cause pipeline stalls.
This pass is performed twice, before and after register allocation. The code for this
pass is located in ‘haifa-sched.c’, ‘sched-deps.c’, ‘sched-ebb.c’, ‘sched-rgn.c’
and ‘sched-vis.c’.

e Register allocation

These passes make sure that all occurrences of pseudo registers are eliminated, either
by allocating them to a hard register, replacing them by an equivalent expression (e.g.
a constant) or by placing them on the stack. This is done in several subpasses:

e The integrated register allocator (IRA). It is called integrated because coalescing,
register live range splitting, and hard register preferencing are done on-the-fly
during coloring. It also has better integration with the reload/LRA pass. Pseudo-
registers spilled by the allocator or the reload/LRA have still a chance to get
hard-registers if the reload/LRA evicts some pseudo-registers from hard-registers.
The allocator helps to choose better pseudos for spilling based on their live ranges
and to coalesce stack slots allocated for the spilled pseudo-registers. IRA is a
regional register allocator which is transformed into Chaitin-Briggs allocator if
there is one region. By default, IRA chooses regions using register pressure but
the user can force it to use one region or regions corresponding to all loops.

Source files of the allocator are ‘ira.c’, ‘ira-build.c’, ‘ira-costs.c’,
‘ira-conflicts.c’, ‘dra-color.c’, ‘ira-emit.c’, ‘ira-lives’, plus header files
‘ira.h’ and ‘ira-int.h’ used for the communication between the allocator and
the rest of the compiler and between the IRA files.

e Reloading. This pass renumbers pseudo registers with the hardware registers num-
bers they were allocated. Pseudo registers that did not get hard registers are re-
placed with stack slots. Then it finds instructions that are invalid because a value
has failed to end up in a register, or has ended up in a register of the wrong kind.
It fixes up these instructions by reloading the problematical values temporarily
into registers. Additional instructions are generated to do the copying.

The reload pass also optionally eliminates the frame pointer and inserts instruc-
tions to save and restore call-clobbered registers around calls.

Source files are ‘reload.c’ and ‘reloadl.c’, plus the header ‘reload.h’ used for
communication between them.



142

GNU Compiler Collection (GCC) Internals

e This pass is a modern replacement of the reload pass. Source files
are ‘lra.c’, ‘lra-assign.c’, ‘lra-coalesce.c’, ‘lra-constraints.c’,
‘lra-eliminations.c’, ‘lra-lives.c’, ‘lra-remat.c’, ‘lra-spills.c’, the

header ‘lra-int.h’ used for communication between them, and the header
‘lra.h’ used for communication between LRA and the rest of compiler.

Unlike the reload pass, intermediate LRA decisions are reflected in RTL as much as
possible. This reduces the number of target-dependent macros and hooks, leaving
instruction constraints as the primary source of control.

LRA is run on targets for which TARGET_LRA_P returns true.
Basic block reordering

This pass implements profile guided code positioning. If profile information is not avail-
able, various types of static analysis are performed to make the predictions normally
coming from the profile feedback (IE execution frequency, branch probability, etc). It
is implemented in the file ‘bb-reorder.c’, and the various prediction routines are in
‘predict.c’.

Variable tracking

This pass computes where the variables are stored at each position in code and gener-
ates notes describing the variable locations to RTL code. The location lists are then
generated according to these notes to debug information if the debugging information
format supports location lists. The code is located in ‘var-tracking.c’.

Delayed branch scheduling

This optional pass attempts to find instructions that can go into the delay slots of other
instructions, usually jumps and calls. The code for this pass is located in ‘reorg.c’.

Branch shortening

On many RISC machines, branch instructions have a limited range. Thus, longer
sequences of instructions must be used for long branches. In this pass, the compiler
figures out what how far each instruction will be from each other instruction, and
therefore whether the usual instructions, or the longer sequences, must be used for
each branch. The code for this pass is located in ‘final.c’.

Register-to-stack conversion

Conversion from usage of some hard registers to usage of a register stack may be done
at this point. Currently, this is supported only for the floating-point registers of the
Intel 80387 coprocessor. The code for this pass is located in ‘reg-stack.c’.

Final

This pass outputs the assembler code for the function. The source files are ‘final.c’
plus ‘insn-output.c’; the latter is generated automatically from the machine descrip-
tion by the tool ‘genoutput’. The header file ‘conditions.h’ is used for communication
between these files.

Debugging information output

This is run after final because it must output the stack slot offsets for pseudo reg-
isters that did not get hard registers. Source files are ‘dbxout.c’ for DBX symbol
table format, ‘dwarfout.c’ for DWARF symbol table format, files ‘dwarf2out.c’ and
‘dwarf2asm.c’ for DWARF2 symbol table format, and ‘vmsdbgout.c’ for VMS debug
symbol table format.



Chapter 9: Passes and Files of the Compiler 143

9.7 Optimization info

This section is describes dump infrastructure which is common to both pass dumps as well
as optimization dumps. The goal for this infrastructure is to provide both gcc developers
and users detailed information about various compiler transformations and optimizations.

9.7.1 Dump setup

A dump_manager class is defined in ‘dumpfile.h’. Various passes register dumping pass-
specific information via dump_register in ‘passes.c’. During the registration, an opti-
mization pass can select its optimization group (see Section 9.7.2 [Optimization groups],
page 143). After that optimization information corresponding to the entire group (presum-
ably from multiple passes) can be output via command-line switches. Note that if a pass
does not fit into any of the pre-defined groups, it can select OPTGROUP_NONE.

Note that in general, a pass need not know its dump output file name, whether certain
flags are enabled, etc. However, for legacy reasons, passes could also call dump_begin which
returns a stream in case the particular pass has optimization dumps enabled. A pass could
call dump_end when the dump has ended. These methods should go away once all the passes
are converted to use the new dump infrastructure.

The recommended way to setup the dump output is via dump_start and dump_end.

9.7.2 Optimization groups
The optimization passes are grouped into several categories. Currently defined categories

in ‘dumpfile.h’ are

OPTGROUP_IPA
IPA optimization passes. Enabled by ‘~ipa’

OPTGROUP_LOOQOP
Loop optimization passes. Enabled by ‘~1loop’.

OPTGROUP_INLINE
Inlining passes. Enabled by ‘~inline’.

OPTGROUP_OMP
OMP (Offloading and Multi Processing) passes. Enabled by ‘-omp’.

OPTGROUP_VEC
Vectorization passes. Enabled by ‘-vec’.

OPTGROUP_OTHER
All other optimization passes which do not fall into one of the above.

OPTGROUP_ALL
All optimization passes. Enabled by ‘-optall’.

By using groups a user could selectively enable optimization information only for a group

of passes. By default, the optimization information for all the passes is dumped.

9.7.3 Dump files and streams

There are two separate output streams available for outputting optimization information
from passes. Note that both these streams accept stderr and stdout as valid streams and



144 GNU Compiler Collection (GCC) Internals

thus it is possible to dump output to standard output or error. This is specially handy for
outputting all available information in a single file by redirecting stderr.

pstream  This stream is for pass-specific dump output. For example,
‘~fdump-tree-vect=foo.v’ dumps tree vectorization pass output into
the given file name ‘foo.v’. If the file name is not provided, the default file
name is based on the source file and pass number. Note that one could also
use special file names stdout and stderr for dumping to standard output and
standard error respectively.

alt_stream
This steam is used for printing optimization specific output in response to the
‘~fopt-info’. Again a file name can be given. If the file name is not given, it
defaults to stderr.

9.7.4 Dump output verbosity
The dump verbosity has the following options

‘optimized’
Print information when an optimization is successfully applied. It is up to a
pass to decide which information is relevant. For example, the vectorizer passes
print the source location of loops which got successfully vectorized.

‘missed’  Print information about missed optimizations. Individual passes control which
information to include in the output. For example,
gcc -02 -ftree-vectorize -fopt-info-vec-missed
will print information about missed optimization opportunities from vectoriza-
tion passes on stderr.

‘note’ Print verbose information about optimizations, such as certain transformations,
more detailed messages about decisions etc.

‘all’ Print detailed optimization information. This includes optimized, missed, and
note.

9.7.5 Dump types

dump_printf

This is a generic method for doing formatted output. It takes an additional
argument, dump_kind which signifies the type of dump. This method outputs
information only when the dumps are enabled for this particular dump_kind.
Note that the caller doesn’t need to know if the particular dump is enabled
or not, or even the file name. The caller only needs to decide which dump
output information is relevant, and under what conditions. This determines
the associated flags.

Consider the following example from ‘loop-unroll.c’ where an informative
message about a loop (along with its location) is printed when any of the
following flags is enabled

— optimization messages

— RTL dumps



Chapter 9: Passes and Files of the Compiler 145

— detailed dumps

int report_flags = MSG_OPTIMIZED_LOCATIONS | TDF_RTL | TDF_DETAILS;]
dump_printf_loc (report_flags, insn,
"loop turned into non-loop; it never loops.\n");|}

dump_basic_block
Output basic block.

dump_generic_expr
Output generic expression.

dump_gimple_stmt

Output gimple statement.

Note that the above methods also have variants prefixed with _loc, such as
dump_printf_loc, which are similar except they also output the source location
information. The _loc variants take a const dump_location_t &. This class
can be constructed from a gimple * or from a rtx_insn *, and so callers can
pass a gimple * or a rtx_insn * as the _loc argument. The dump_location_t
constructor will extract the source location from the statement or instruction,
along with the profile count, and the location in GCC’s own source code (or
the plugin) from which the dump call was emitted. Only the source location
is currently used. There is also a dump_user_location_t class, capturing the
source location and profile count, but not the dump emission location, so that
locations in the user’s code can be passed around. This can also be constructed
from a gimple * and from a rtx_insn *, and it too can be passed as the _loc
argument.

9.7.6 Dump examples
gcc -03 -fopt-info-missed=missed.all
outputs missed optimization report from all the passes into ‘missed.all’.
As another example,
gcc -03 -fopt-info-inline-optimized-missed=inline.txt

will output information about missed optimizations as well as optimized locations from
all the inlining passes into ‘inline.txt’.

If the filename is provided, then the dumps from all the applicable optimizations are
concatenated into the ‘filename’. Otherwise the dump is output onto ‘stderr’. If options
is omitted, it defaults to ‘optimized-optall’, which means dump all information about
successful optimizations from all the passes. In the following example, the optimization
information is output on to ‘stderr’.

gcc -03 -fopt-info

Note that ‘-fopt-info-vec-missed’ behaves the same as ‘-fopt-info-missed-vec’.
The order of the optimization group names and message types listed after ‘~fopt-info’
does not matter.

As another example, consider

gcc —fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt

Here the two output file names ‘vec.miss’ and ‘loop.opt’ are in conflict since only one

output file is allowed. In this case, only the first option takes effect and the subsequent



146 GNU Compiler Collection (GCC) Internals

options are ignored. Thus only the ‘vec.miss’ is produced which containts dumps from the
vectorizer about missed opportunities.



Chapter 10: Sizes and offsets as runtime invariants 147

10 Sizes and offsets as runtime invariants

GCC allows the size of a hardware register to be a runtime invariant rather than a compile-
time constant. This in turn means that various sizes and offsets must also be runtime
invariants rather than compile-time constants, such as:

e the size of a general machine_mode (see Section 14.6 [Machine Modes|, page 271);

e the size of a spill slot;

e the offset of something within a stack frame;

e the number of elements in a vector;

e the size and offset of a mem rtx (see Section 14.8 [Regs and Memory]|, page 282); and
e the byte offset in a subreg rtx (see Section 14.8 [Regs and Memory]|, page 282).

The motivating example is the Arm SVE ISA, whose vector registers can be any multiple
of 128 bits between 128 and 2048 inclusive. The compiler normally produces code that
works for all SVE register sizes, with the actual size only being known at runtime.

GCC(C’s main representation of such runtime invariants is the poly_int class. This chapter
describes what poly_int does, lists the available operations, and gives some general usage
guidelines.

10.1 Overview of poly_int

We define indeterminates xI, ..., xn whose values are only known at runtime and use
polynomials of the form:
cO+ cl*xx1+ ...+ cn * xn
to represent a size or offset whose value might depend on some of these indeterminates.
The coefficients c0, ..., cn are always known at compile time, with the cO term being the
“constant” part that does not depend on any runtime value.

GCC uses the poly_int class to represent these coeflicients. The class has two template
parameters: the first specifies the number of coefficients (n + 1) and the second specifies
the type of the coefficients. For example, ‘poly_int<2, unsigned short>’ represents a
polynomial with two coefficients (and thus one indeterminate), with each coefficient having
type unsigned short. When n is 0, the class degenerates to a single compile-time constant

c0.

The number of coefficients needed for compilation is a fixed property of each target and
is specified by the configuration macro NUM_POLY_INT_COEFFS. The default value is 1, since
most targets do not have such runtime invariants. Targets that need a different value should
#define the macro in their ‘cpu-modes.def’ file. See Section 6.3.9 [Back End|, page 75.

poly_int makes the simplifying requirement that each indeterminate must be a nonneg-
ative integer. An indeterminate value of 0 should usually represent the minimum possible
runtime value, with c0 specifying the value in that case.

For example, when targetting the Arm SVE ISA, the single indeterminate represents the
number of 128-bit blocks in a vector beyond the minimum length of 128 bits. Thus the
number of 64-bit doublewords in a vector is 2 + 2 * x1. If an aggregate has a single SVE
vector and 16 additional bytes, its total size is 32 + 16 * xI bytes.

The header file ‘poly-int-types.h’ provides typedefs for the most common forms of
poly_int, all having NUM_POLY_INT_COEFFS coefficients:



148 GNU Compiler Collection (GCC) Internals

poly_uinti16
a ‘poly_int’ with unsigned short coefficients.

poly_int64
a ‘poly_int’ with HOST_WIDE_INT coefficients.

poly_uint64
a ‘poly_int’ with unsigned HOST_WIDE_INT coefficients.

poly_offset_int
a ‘poly_int’ with offset_int coeflicients.

poly_wide_int
a ‘poly_int’ with wide_int coefficients.

poly_widest_int
a ‘poly_int’ with widest_int coefficients.

Since the main purpose of poly_int is to represent sizes and offsets, the last two typedefs
are only rarely used.

10.2 Consequences of using poly_int
The two main consequences of using polynomial sizes and offsets are that:

e there is no total ordering between the values at compile time, and

e some operations might yield results that cannot be expressed as a poly_int.

For example, if x is a runtime invariant, we cannot tell at compile time whether:

3+ 4x <=1 + bx
since the condition is false when x <= 1 and true when x >= 2.

Similarly, poly_int cannot represent the result of:

(3 +4x) * (1 + 5x)

since it cannot (and in practice does not need to) store powers greater than one. It also
cannot represent the result of:

(3 + 4x) / (1 + bx)
The following sections describe how we deal with these restrictions.

As described earlier, a poly_int<1, T> has no indeterminates and so degenerates to a
compile-time constant of type T. It would be possible in that case to do all normal arithmetic
on the T, and to compare the T using the normal C++ operators. We deliberately prevent
target-independent code from doing this, since the compiler needs to support other poly_
int<n, T> as well, regardless of the current target’s NUM_POLY_INT_COEFFS.

However, it would be very artificial to force target-specific code to follow these restrictions
if the target has no runtime indeterminates. There is therefore an implicit conversion from
poly_int<1, T> to T when compiling target-specific translation units.



Chapter 10: Sizes and offsets as runtime invariants 149

10.3 Comparisons involving poly_int

In general we need to compare sizes and offsets in two situations: those in which the values
need to be ordered, and those in which the values can be unordered. More loosely, the
distinction is often between values that have a definite link (usually because they refer to
the same underlying register or memory location) and values that have no definite link.
An example of the former is the relationship between the inner and outer sizes of a subreg,
where we must know at compile time whether the subreg is paradoxical, partial, or complete.
An example of the latter is alias analysis: we might want to check whether two arbitrary
memory references overlap.

Referring back to the examples in the previous section, it makes sense to ask whether a
memory reference of size ‘3 + 4x’ overlaps one of size ‘1 + 5x’, but it does not make sense
to have a subreg in which the outer mode has ‘3 + 4x” bytes and the inner mode has ‘1 +
5x" bytes (or vice versa). Such subregs are always invalid and should trigger an internal
compiler error if formed.

The underlying operators are the same in both cases, but the distinction affects how they
are used.

10.3.1 Comparison functions for poly_int

poly_int provides the following routines for checking whether a particular condition “may
be” (might be) true:

maybe_lt maybe_le maybe_eq maybe_ge maybe_gt
maybe_ne

The functions have their natural meaning;:

‘maybe_lt(a, b)’
Return true if a might be less than b.

‘maybe_le(a, b)’
Return true if a might be less than or equal to b.

‘maybe_eq(a, b)’
Return true if a might be equal to b.

‘maybe_ne(a, b)’
Return true if a might not be equal to b.

‘maybe_ge(a, b)’
Return true if a might be greater than or equal to b.

‘maybe_gt(a, b)’
Return true if a might be greater than b.

For readability, poly_int also provides “known” inverses of these functions:

known_1t (a, b) == !maybe_ge (a, b)
known_le (a, b) == !maybe_gt (a, b)
known_eq (a, b) == !maybe_ne (a, b)
known_ge (a, b) == !maybe_lt (a, b)
known_gt (a, b) == !maybe_le (a, b)

known_ne (a, b) == !maybe_eq (a, b)



150

GNU Compiler Collection (GCC) Internals

10.3.2 Properties of the poly_int comparisons

All “maybe” relations except maybe_ne are transitive, so for example:

maybe_1t (a, b) && maybe_lt (b, c) implies maybe_lt (a, c¢)

for all a, b and c. maybe_1t, maybe_gt and maybe_ne are irreflexive, so for example:

Imaybe_1t (a, a)

is true for all a.

maybe_le

(a,

is true for all a.

maybe_eq
maybe_ne

(a,
(a,

maybe_le, maybe_eq and maybe_ge are reflexive, so for example:

a)

maybe_eq and maybe_ne are symmetric, so:

b) == maybe_eq (b, a)
b) == maybe_ne

for all a and b. In addition:

maybe_le
maybe_ge
maybe_1t
maybe_le

However:

maybe_le
maybe_ge

(a,
(a,
(a,
(a,

(a,
(a,

b)
b)
b)
b)

b)
b)

&&
&&

maybe_1t
maybe_gt
maybe_gt
maybe_ge

maybe_le
maybe_ge

(b, a)

(a, b)
(a, b)
(b, a)
(b, a

(b, a)
(b, a)

|| maybe_eq (a, b)
|| maybe_eq (a, b)

does not imply !maybe_ne (a, b) [== known_eq (a, b)]
does not imply !'maybe_ne (a, b) [== known_eq (a, b)]

One example is again ‘a==3+4x" and ‘b==1+ 5%, where ‘maybe_le (a, b)’,
‘maybe_ge (a, b)’ and ‘maybe_ne (a, b)’ all hold. maybe_le and maybe_ge are therefore
not antisymetric and do not form a partial order.

From the above, it follows that:

o All “known” relations except known_ne are transitive.

e known_lt, known_ne and known_gt are irreflexive.

e known_le, known_eq and known_ge are reflexive.

Also:

known_1t
known_1le
known_1t
known_gt
known_le
known_ge

(a,
(a,
(a,
(a,
(a,
(a,

b)
b)
b)
b)
b)
b)

known_gt
known_ge

(b, a)
(b, a)

implies 'known_lt (b, a) [asymmetry]

implies 'known_gt (b, a)

&& known_le (b, a) == known_eq (a, b) [== !maybe_ne (a, b)]
&& known_ge (b, a) == known_eq (a, b) [== !maybe_ne (a, b)]

known_le and known_ge are therefore antisymmetric and are partial orders. However:

known_le (a, b) does not imply known_lt (a, b) || known_eq (a, b)
known_ge (a, b) does not imply known_gt (a, b) || known_eq (a, b)

For example, ‘known_le (4, 4 + 4x)’ holds because the runtime indeterminate x is a
nonnegative integer, but neither known_1t (4, 4 + 4x) nor known_eq (4, 4 + 4x) hold.

10.3.3 Comparing potentially-unordered poly_ints

In cases where there is no definite link between two poly_ints, we can usually make a
conservatively-correct assumption. For example, the conservative assumption for alias anal-
ysis is that two references might alias.

One way of checking whether [beginl, endl) might overlap [begin2, end2) using the
poly_int comparisons is:



Chapter 10: Sizes and offsets as runtime invariants 151

maybe_gt (endl, begin2) && maybe_gt (end2, beginl)
and another (equivalent) way is:
! (known_le (endl, begin2) || known_le (end2, beginl))
However, in this particular example, it is better to use the range helper functions instead.
See Section 10.3.6 [Range checks on poly_ints], page 152.

10.3.4 Comparing ordered poly_ints

In cases where there is a definite link between two poly_ints, such as the outer and inner
sizes of subregs, we usually require the sizes to be ordered by the known_le partial order.
poly_int provides the following utility functions for ordered values:

‘ordered_p (a, b)’
Return true if a and b are ordered by the known_le partial order.

‘ordered_min (a, b)’
Assert that a and b are ordered by known_le and return the minimum of the
two. When using this function, please add a comment explaining why the values
are known to be ordered.

‘ordered_max (a, b)’
Assert that a and b are ordered by known_le and return the maximum of the
two. When using this function, please add a comment explaining why the values
are known to be ordered.
For example, if a subreg has an outer mode of size outer and an inner mode of size inner:
e the subreg is complete if known_eq (inner, outer)
e otherwise, the subreg is paradoxical if known_le (inner, outer)
e otherwise, the subreg is partial if known_le (outer, inner)
e otherwise, the subreg is ill-formed
Thus the subreg is only valid if ‘ordered_p (outer, inner)’is true. If this condition is
already known to be true then:
e the subreg is complete if known_eq (inner, outer)
e the subreg is paradoxical if maybe_lt (inner, outer)

e the subreg is partial if maybe_lt (outer, inner)

with the three conditions being mutually exclusive.

Code that checks whether a subreg is valid would therefore generally check whether
ordered_p holds (in addition to whatever other checks are required for subreg validity).
Code that is dealing with existing subregs can assert that ordered_p holds and use either
of the classifications above.

10.3.5 Checking for a poly_int marker value

It is sometimes useful to have a special “marker value” that is not meant to be taken
literally. For example, some code uses a size of -1 to represent an unknown size, rather than
having to carry around a separate boolean to say whether the size is known.

The best way of checking whether something is a marker value is known_eq. Conversely
the best way of checking whether something is not a marker value is maybe_ne.



152 GNU Compiler Collection (GCC) Internals

Thus in the size example just mentioned, ‘known_eq (size, -1)’ would check for an
unknown size and ‘maybe_ne (size, -1)’ would check for a known size.

10.3.6 Range checks on poly_ints

As well as the core comparisons (see Section 10.3.1 [Comparison functions for poly_int],
page 149), poly_int provides utilities for various kinds of range check. In each case the
range is represented by a start position and a size rather than a start position and an end
position; this is because the former is used much more often than the latter in GCC. Also,
the sizes can be -1 (or all ones for unsigned sizes) to indicate a range with a known start
position but an unknown size. All other sizes must be nonnegative. A range of size 0 does
not contain anything or overlap anything.

‘known_size_p (size)’
Return true if size represents a known range size, false if it is -1 or all ones (for
signed and unsigned types respectively).

‘ranges_maybe_overlap_p (posl, sizel, pos2, size2)’
Return true if the range described by posl and sizel might overlap the range
described by pos2 and size2 (in other words, return true if we cannot prove
that the ranges are disjoint).

‘ranges_known_overlap_p (posl, sizel, pos2, size2)’
Return true if the range described by posl and sizel is known to overlap the
range described by pos2 and size2.

‘known_subrange_p (pos1, sizel, pos2, size2)’
Return true if the range described by posl and sizel is known to be contained
in the range described by pos2 and size2.

‘maybe_in_range_p (value, pos, size)’
Return true if value might be in the range described by pos and size (in other
words, return true if we cannot prove that value is outside that range).

‘known_in_range_p (value, pos, size)’
Return true if value is known to be in the range described by pos and size.

‘endpoint_representable_p (pos, size)’
Return true if the range described by pos and size is open-ended or if the
endpoint (pos + size) is representable in the same type as pos and size. The
function returns false if adding size to pos makes conceptual sense but could
overflow.

There is also a poly_int version of the IN_RANGE_P macro:

‘coeffs_in_range_p (x, lower, upper)’
Return true if every coefficient of x is in the inclusive range [lower, upper].
This function can be useful when testing whether an operation would cause the
values of coefficients to overflow.

Note that the function does not indicate whether x itself is in the given range.
x can be either a constant or a poly_int.



Chapter 10: Sizes and offsets as runtime invariants 153

10.3.7 Sorting poly_ints
poly_int provides the following routine for sorting:

‘compare_sizes_for_sort (a, b)’
Compare a and b in reverse lexicographical order (that is, compare the highest-
indexed coefficients first). This can be useful when sorting data structures,
since it has the effect of separating constant and non-constant values. If all
values are nonnegative, the constant values come first.
Note that the values do not necessarily end up in numerical order. For example,

‘1 + 1x’ would come after ‘100’ in the sort order, but may well be less than ‘100’
at run time.

10.4 Arithmetic on poly_ints

Addition, subtraction, negation and bit inversion all work normally for poly_ints. Mul-
tiplication by a constant multiplier and left shifting by a constant shift amount also work
normally. General multiplication of two poly_ints is not supported and is not useful in
practice.

Other operations are only conditionally supported: the operation might succeed or might
fail, depending on the inputs.

This section describes both types of operation.

10.4.1 Using poly_int with C++ arithmetic operators

The following C++ expressions are supported, where pl and p2 are poly_ints and where
cl and c2 are scalars:
_pl

pl + p2
pl + c2
cl + p2

pl - p2
pl - c2
cl - p2

cl * p2
pl * c2

pl << ¢2

pl += p2
pl += c2

= p2
pl —= c2

pl *= c2
pl <<= c2
These arithmetic operations handle integer ranks in a similar way to C++. The main

difference is that every coefficient narrower than HOST_WIDE_INT promotes to HOST_WIDE_
INT, whereas in C++ everything narrower than int promotes to int. For example:



154

poly_uinti16
unsigned int

poly_int64
poly_int32
uint64

poly_offset_int

offset_int

+
+
+
+
+
+
+

int
poly_uinti16
int
poly_uint64
poly_int64
int32
poly_uinti16

GNU Compiler Collection (GCC) Internals

poly_int64
poly_int64
poly_int64
poly_uint64
poly_uint64
poly_offset_int
poly_offset_int

In the first two examples, both coefficients are narrower than HOST_WIDE_INT, so the
result has coefficients of type HOST_WIDE_INT. In the other examples, the coefficient with
the highest rank “wins”.

If one of the operands is wide_int or poly_wide_int, the rules are the same as for
wide_int arithmetic.

10.4.2 wi arithmetic on poly_ints

As well as the C++ operators, poly_int supports the following wi routines:

wi::neg (p1, &overflow)
radd
radd
radd
radd

wi:
wi:
wi:
wi:

(p1,
(p1,
(ct1,
(p1,

p2)
c2)
pl)
p2, sign, &overflow)
:sub
:sub
:sub
:sub

wi:
wi:
wi:
wi:

(p1,
(p1,
(c1,
(p1,

p2)
c2)
pl)
p2, sign, &overflow)
:mul
:mul
:mul

wi:
wi:
wi:

c2)
p1)
c2, sign, &overflow)

(p1,
(ct1,
(p1,

wi::1lshift (p1, c2)

These routines just check whether overflow occurs on any individual coefficient; it is not
possible to know at compile time whether the final runtime value would overflow.

10.4.3 Division of poly_ints

Division of poly_ints is possible for certain inputs. The functions for division return true
if the operation is possible and in most cases return the results by pointer. The routines
are:

‘multiple_p (a, b)’

‘multiple_p (a, b, &quotient)’
Return true if a is an exact multiple of b, storing the result in quotient if so.
There are overloads for various combinations of polynomial and constant a, b
and quotient.

‘constant_multiple_p (a, b)’
‘constant_multiple_p (a, b, &quotient)’
Like multiple_p, but also test whether the multiple is a compile-time constant.



Chapter 10: Sizes and offsets as runtime invariants 155

‘can_div_trunc_p (a, b, &quotient)’

‘can_div_trunc_p (a, b, &quotient, &remainder)’
Return true if we can calculate ‘trunc (a / b)’ at compile time, storing the
result in quotient and remainder if so.

‘can_div_away_from_zero_p (a, b, &quotient)’
Return true if we can calculate ‘a / b’ at compile time, rounding away from
zero. Store the result in quotient if so.

Note that this is true if and only if can_div_trunc_p is true. The only difference
is in the rounding of the result.

There is also an asserting form of division:

‘exact_div (a, b)’
Assert that a is a multiple of b and return ‘a / b’. The result is a poly_int if
ais a poly_int.

10.4.4 Other poly_int arithmetic

There are tentative routines for other operations besides division:

‘can_ior_p (a, b, &result)’
Return true if we can calculate ‘a | b’ at compile time, storing the result in
result if so.

Also, ANDs with a value ‘(1 << y) - 1’ or its inverse can be treated as alignment opera-
tions. See Section 10.5 [Alignment of poly_ints], page 155.

In addition, the following miscellaneous routines are available:

‘coeff_gcd (a)’
Return the greatest common divisor of all nonzero coefficients in a, or zero if a
is known to be zero.

‘common_multiple (a, b)’
Return a value that is a multiple of both a and b, where one value is a poly_int
and the other is a scalar. The result will be the least common multiple for some
indeterminate values but not necessarily for all.

‘force_common_multiple (a, b)’
Return a value that is a multiple of both poly_int a and poly_int b, asserting
that such a value exists. The result will be the least common multiple for some
indeterminate values but not necessarily for all.

When using this routine, please add a comment explaining why the assertion is
known to hold.

Please add any other operations that you find to be useful.

10.5 Alignment of poly_ints

poly_int provides various routines for aligning values and for querying misalignments. In
each case the alignment must be a power of 2.



156 GNU Compiler Collection (GCC) Internals

‘can_align_p (value, align)’
Return true if we can align value up or down to the nearest multiple of align
at compile time. The answer is the same for both directions.

‘can_align_down (value, align, &aligned)’
Return true if can_align_p; if so, set aligned to the greatest aligned value that
is less than or equal to value.

‘can_align_up (value, align, &aligned)’
Return true if can_align_p; if so, set aligned to the lowest aligned value that
is greater than or equal to value.

‘known_equal_after_align_down (a, b, align)’
Return true if we can align a and b down to the nearest align boundary at
compile time and if the two results are equal.

‘known_equal_after_align up (a, b, align)’
Return true if we can align a and b up to the nearest align boundary at compile
time and if the two results are equal.

‘aligned_lower_bound (value, align)’
Return a result that is no greater than value and that is aligned to align.
The result will the closest aligned value for some indeterminate values but not
necessarily for all.

For example, suppose we are allocating an object of size bytes in a downward-
growing stack whose current limit is given by limit. If the object requires align
bytes of alignment, the new stack limit is given by:

aligned_lower_bound (limit - size, align)

‘aligned_upper_bound (value, align)’
Likewise return a result that is no less than value and that is aligned to align.
This is the routine that would be used for upward-growing stacks in the scenario
just described.

‘known_misalignment (value, align, &misalign)’
Return true if we can calculate the misalignment of value with respect to align
at compile time, storing the result in misalign if so.

‘known_alignment (value)’
Return the minimum alignment that value is known to have (in other words,
the largest alignment that can be guaranteed whatever the values of the inde-
terminates turn out to be). Return 0 if value is known to be 0.

‘force_align_down (value, align)’
Assert that value can be aligned down to align at compile time and return the
result. When using this routine, please add a comment explaining why the
assertion is known to hold.

‘force_align_up (value, align)’
Likewise, but aligning up.

‘force_align_down_and_div (value, align)’
Divide the result of force_align_down by align. Again, please add a comment
explaining why the assertion in force_align_down is known to hold.



Chapter 10: Sizes and offsets as runtime invariants 157

‘force_align_up_and_div (value, align)’
Likewise for force_align_up.

‘force_get_misalignment (value, align)’
Assert that we can calculate the misalignment of value with respect to align at
compile time and return the misalignment. When using this function, please
add a comment explaining why the assertion is known to hold.

10.6 Computing bounds on poly_ints

poly_int also provides routines for calculating lower and upper bounds:

‘constant_lower_bound (a)’
Assert that a is nonnegative and return the smallest value it can have.

‘constant_lower_bound_with_limit (a, b)’
Return the least value a can have, given that the context in which a appears
guarantees that the answer is no less than b. In other words, the caller is
asserting that a is greater than or equal to b even if ‘known_ge (a, b)’ doesn’t
hold.

‘constant_upper_bound_with_limit (a, b)’
Return the greatest value a can have, given that the context in which a appears
guarantees that the answer is no greater than b. In other words, the caller is
asserting that a is less than or equal to b even if ‘known_le (a, b)’ doesn’t
hold.

‘lower_bound (a, b)’
Return a value that is always less than or equal to both a and b. It will be the
greatest such value for some indeterminate values but necessarily for all.

‘upper_bound (a, b)’
Return a value that is always greater than or equal to both a and b. It will be
the least such value for some indeterminate values but necessarily for all.

10.7 Converting poly_ints

A poly_int<n, T> can be constructed from up to n individual T coefficients, with the
remaining coefficients being implicitly zero. In particular, this means that every poly_
int<n, T> can be constructed from a single scalar T, or something compatible with T.
Also, a poly_int<n, T> can be constructed from a poly_int<n, U> if T can be con-
structed from U.
The following functions provide other forms of conversion, or test whether such a conver-
sion would succeed.

‘value.is_constant ()’
Return true if poly_int value is a compile-time constant.

‘value.is_constant (&c1)’
Return true if poly_int value is a compile-time constant, storing it in c1 if so.
cl must be able to hold all constant values of value without loss of precision.



158 GNU Compiler Collection (GCC) Internals

‘value.to_constant ()’
Assert that value is a compile-time constant and return its value. When using
this function, please add a comment explaining why the condition is known to
hold (for example, because an earlier phase of analysis rejected non-constants).

‘value.to_shwi (&p2)’
Return true if ‘poly_int<N, T>’ value can be represented without loss of pre-
cision as a ‘poly_int<N, HOST_WIDE_INT>’, storing it in that form in p2 if so.

‘value.to_uhwi (&p2)’
Return true if ‘poly_int<N, T>’ value can be represented without loss of pre-
cision as a ‘poly_int<N, unsigned HOST_WIDE_INT>’, storing it in that form
in p2 if so.

‘value.force_shwi ()’
Forcibly convert each coefficient of ‘poly_int<N, T>’ value to HOST_WIDE_INT,
truncating any that are out of range. Return the result as a ‘poly_int<W,
HOST_WIDE_INT> .

‘value.force_uhwi ()’
Forcibly convert each coefficient of ‘poly_int<N, T>’ value to unsigned
HOST_WIDE_INT, truncating any that are out of range. Return the result as a
‘poly_int<N, unsigned HOST_WIDE_INT>’.

wi::shwi (value, precision)’
Return a poly_int with the same value as value, but with the coeflicients
converted from HOST_WIDE_INT to wide_int. precision specifies the precision of
the wide_int cofficients; if this is wider than a HOST_WIDE_INT, the coeflicients
of value will be sign-extended to fit.

wi::uhwi (value, precision)’
Like wi: :shwi, except that value has coefficients of type unsigned HOST_WIDE_
INT. If precision is wider than a HOST_WIDE_INT, the coefficients of value will
be zero-extended to fit.

wi::sext (value, precision)’
Return a poly_int of the same type as value, sign-extending every coefficient
from the low precision bits. This in effect applies wi: :sext to each coefficient
individually.

wi::zext (value, precision)’
Like wi: :sext, but for zero extension.

‘poly_wide_int::from (value, precision, sign)’
Convert value to a poly_wide_int in which each coefficient has precision bits.
Extend the coefficients according to sign if the coefficients have fewer bits.

‘poly_offset_int::from (value, sign)’
Convert value to a poly_offset_int, extending its coefficients according to
sign if they have fewer bits than offset_int.

‘poly_widest_int::from (value, sign)’
Convert value to a poly_widest_int, extending its coefficients according to
sign if they have fewer bits than widest_int.



Chapter 10: Sizes and offsets as runtime invariants 159

10.8 Miscellaneous poly_int routines

‘print_dec (value, file, sign)’

‘print_dec (value, file)’
Print value to file as a decimal value, interpreting the coefficients according to
sign. The final argument is optional if value has an inherent sign; for example,
poly_int64 values print as signed by default and poly_uint64 values print as
unsigned by default.

This is a simply a poly_int version of a wide-int routine.

10.9 Guidelines for using poly_int

One of the main design goals of poly_int was to make it easy to write target-independent
code that handles variable-sized registers even when the current target has fixed-sized reg-
isters. There are two aspects to this:

e The set of poly_int operations should be complete enough that the question in most
cases becomes “Can we do this operation on these particular poly_int values? If not,
bail out” rather than “Are these poly_int values constant? If so, do the operation,
otherwise bail out”.

e If target-independent code compiles and runs correctly on a target with one value
of NUM_POLY_INT_COEFFS, and if the code does not use asserting functions like to_
constant, it is reasonable to assume that the code also works on targets with other
values of NUM_POLY_INT_COEFFS. There is no need to check this during everyday de-
velopment.

So the general principle is: if target-independent code is dealing with a poly_int value,
it is better to operate on it as a poly_int if at all possible, choosing conservatively-correct
behavior if a particular operation fails. For example, the following code handles an index
pos into a sequence of vectors that each have nunits elements:

/* Calculate which vector contains the result, and which lane of
that vector we need. */
if (!can_div_trunc_p (pos, nunits, &vec_entry, &vec_index))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Cannot determine which vector holds the"
" final result.\n");
return false;

}

However, there are some contexts in which operating on a poly_int is not possible or
does not make sense. One example is when handling static initializers, since no current
target supports the concept of a variable-length static initializer. In these situations, a
reasonable fallback is:

if (poly_value.is_constant (&const_value))

{

/* Operate on const_value. */

else



160 GNU Compiler Collection (GCC) Internals

/* Conservatively correct fallback. */

}

poly_int also provides some asserting functions like to_constant. Please only use these
functions if there is a good theoretical reason to believe that the assertion cannot fire. For
example, if some work is divided into an analysis phase and an implementation phase, the
analysis phase might reject inputs that are not is_constant, in which case the implementa-
tion phase can reasonably use to_constant on the remaining inputs. The assertions should
not be used to discover whether a condition ever occurs “in the field”; in other words,
they should not be used to restrict code to constants at first, with the intention of only
implementing a poly_int version if a user hits the assertion.

If a particular asserting function like to_constant is needed more than once for the same
reason, it is probably worth adding a helper function or macro for that situation, so that
the justification only needs to be given once. For example:

/* Return the size of an element in a vector of size SIZE, given that
the vector has NELTS elements. The return value is in the same units
as SIZE (either bits or bytes).

to_constant () is safe in this situation because vector elements are
always constant-sized scalars. */

#define vector_element_size(SIZE, NELTS) \
(exact_div (SIZE, NELTS).to_constant ())

Target-specific code in ‘config/cpu’ only needs to handle non-constant poly_ints if
NUM_POLY_INT_COEFFS is greater than one. For other targets, poly_int degenerates to a
compile-time constant and is often interchangable with a normal scalar integer. There are
two main exceptions:

e Sometimes an explicit cast to an integer type might be needed, such as to resolve
ambiguities in a 7: expression, or when passing values through ... to things like print
functions.

e Target macros are included in target-independent code and so do not have access to
the implicit conversion to a scalar integer. If this becomes a problem for a particular
target macro, the possible solutions, in order of preference, are:

e Convert the target macro to a target hook (for all targets).

e Put the target’s implementation of the target macro in its ‘cpu.c’ file and call it
from the target macro in the ‘cpu.bh’ file.

e Add to_constant () calls where necessary. The previous option is preferable
because it will help with any future conversion of the macro to a hook.



Chapter 11: GENERIC 161

11 GENERIC

The purpose of GENERIC is simply to provide a language-independent way of representing
an entire function in trees. To this end, it was necessary to add a few new tree codes to the
back end, but almost everything was already there. If you can express it with the codes in
gcc/tree.def, it’'s GENERIC.

Early on, there was a great deal of debate about how to think about statements in a
tree IL. In GENERIC, a statement is defined as any expression whose value, if any, is
ignored. A statement will always have TREE_SIDE_EFFECTS set (or it will be discarded),
but a non-statement expression may also have side effects. A CALL_EXPR, for instance.

It would be possible for some local optimizations to work on the GENERIC form of a
function; indeed, the adapted tree inliner works fine on GENERIC, but the current compiler
performs inlining after lowering to GIMPLE (a restricted form described in the next section).
Indeed, currently the frontends perform this lowering before handing off to tree_rest_of_
compilation, but this seems inelegant.

11.1 Deficiencies

There are many places in which this document is incomplet and incorrekt. It is, as of yet,
only preliminary documentation.

11.2 Overview

The central data structure used by the internal representation is the tree. These nodes,
while all of the C type tree, are of many varieties. A tree is a pointer type, but the object
to which it points may be of a variety of types. From this point forward, we will refer to
trees in ordinary type, rather than in this font, except when talking about the actual C
type tree.

You can tell what kind of node a particular tree is by using the TREE_CODE macro. Many,
many macros take trees as input and return trees as output. However, most macros require
a certain kind of tree node as input. In other words, there is a type-system for trees, but it
is not reflected in the C type-system.

For safety, it is useful to configure GCC with ‘~-enable-checking’. Although this results
in a significant performance penalty (since all tree types are checked at run-time), and is
therefore inappropriate in a release version, it is extremely helpful during the development
process.

Many macros behave as predicates. Many, although not all, of these predicates end in
‘_P’. Do not rely on the result type of these macros being of any particular type. You may,
however, rely on the fact that the type can be compared to 0, so that statements like

if (TEST_P (t) && !TEST_P (y))

x =1;

and

int i = (TEST_P (t) !'= 0);
are legal. Macros that return int values now may be changed to return tree values, or
other pointers in the future. Even those that continue to return int may return multiple
nonzero codes where previously they returned only zero and one. Therefore, you should not
write code like



162 GNU Compiler Collection (GCC) Internals

if (TEST_P (t) == 1)
as this code is not guaranteed to work correctly in the future.

You should not take the address of values returned by the macros or functions described
here. In particular, no guarantee is given that the values are lvalues.

In general, the names of macros are all in uppercase, while the names of functions are
entirely in lowercase. There are rare exceptions to this rule. You should assume that any
macro or function whose name is made up entirely of uppercase letters may evaluate its
arguments more than once. You may assume that a macro or function whose name is made
up entirely of lowercase letters will evaluate its arguments only once.

The error_mark_node is a special tree. Its tree code is ERROR_MARK, but since there is
only ever one node with that code, the usual practice is to compare the tree against error_
mark_node. (This test is just a test for pointer equality.) If an error has occurred during
front-end processing the flag errorcount will be set. If the front end has encountered code
it cannot handle, it will issue a message to the user and set sorrycount. When these
flags are set, any macro or function which normally returns a tree of a particular kind may
instead return the error_mark_node. Thus, if you intend to do any processing of erroneous
code, you must be prepared to deal with the error_mark_node.

Occasionally, a particular tree slot (like an operand to an expression, or a particular field
in a declaration) will be referred to as “reserved for the back end”. These slots are used to
store RTL when the tree is converted to RTL for use by the GCC back end. However, if
that process is not taking place (e.g., if the front end is being hooked up to an intelligent
editor), then those slots may be used by the back end presently in use.

If you encounter situations that do not match this documentation, such as tree nodes of
types not mentioned here, or macros documented to return entities of a particular kind that
instead return entities of some different kind, you have found a bug, either in the front end
or in the documentation. Please report these bugs as you would any other bug.

11.2.1 Trees

All GENERIC trees have two fields in common. First, TREE_CHAIN is a pointer that can be
used as a singly-linked list to other trees. The other is TREE_TYPE. Many trees store the
type of an expression or declaration in this field.

These are some other functions for handling trees:

tree_size
Return the number of bytes a tree takes.

buildO
buildl
build2
build3
build4
buildb
build6

These functions build a tree and supply values to put in each parameter. The
basic signature is ‘code, type, [operands]’. code is the TREE_CODE, and type
is a tree representing the TREE_TYPE. These are followed by the operands, each
of which is also a tree.



Chapter 11: GENERIC 163

11.2.2 Identifiers

An IDENTIFIER_NODE represents a slightly more general concept than the standard C or
C++ concept of identifier. In particular, an IDENTIFIER_NODE may contain a ‘$’, or other
extraordinary characters.

There are never two distinct IDENTIFIER_NODESs representing the same identifier. There-
fore, you may use pointer equality to compare IDENTIFIER_NODEs, rather than using a
routine like strcmp. Use get_identifier to obtain the unique IDENTIFIER_NODE for a
supplied string.

You can use the following macros to access identifiers:

IDENTIFIER_POINTER
The string represented by the identifier, represented as a char*. This string is
always NUL-terminated, and contains no embedded NUL characters.

IDENTIFIER_LENGTH
The length of the string returned by IDENTIFIER_POINTER, not including the
trailing NUL. This value of IDENTIFIER_LENGTH (x) is always the same as
strlen (IDENTIFIER_POINTER (x)).

IDENTIFIER_OPNAME_P
This predicate holds if the identifier represents the name of an overloaded
operator. In this case, you should not depend on the contents of either the
IDENTIFIER_POINTER or the IDENTIFIER_LENGTH.

IDENTIFIER_TYPENAME_P
This predicate holds if the identifier represents the name of a user-defined con-
version operator. In this case, the TREE_TYPE of the IDENTIFIER_NODE holds
the type to which the conversion operator converts.

11.2.3 Containers

Two common container data structures can be represented directly with tree nodes. A
TREE_LIST is a singly linked list containing two trees per node. These are the TREE_
PURPOSE and TREE_VALUE of each node. (Often, the TREE_PURPOSE contains some kind of
tag, or additional information, while the TREE_VALUE contains the majority of the payload.
In other cases, the TREE_PURPOSE is simply NULL_TREE, while in still others both the TREE_
PURPOSE and TREE_VALUE are of equal stature.) Given one TREE_LIST node, the next node
is found by following the TREE_CHAIN. If the TREE_CHAIN is NULL_TREE, then you have
reached the end of the list.

A TREE_VEC is a simple vector. The TREE_VEC_LENGTH is an integer (not a tree) giving the
number of nodes in the vector. The nodes themselves are accessed using the TREE_VEC_ELT
macro, which takes two arguments. The first is the TREE_VEC in question; the second is an
integer indicating which element in the vector is desired. The elements are indexed from
Zero.

11.3 Types

All types have corresponding tree nodes. However, you should not assume that there is
exactly one tree node corresponding to each type. There are often multiple nodes corre-
sponding to the same type.



164 GNU Compiler Collection (GCC) Internals

For the most part, different kinds of types have different tree codes. (For example, pointer
types use a POINTER_TYPE code while arrays use an ARRAY_TYPE code.) However, pointers to
member functions use the RECORD_TYPE code. Therefore, when writing a switch statement
that depends on the code associated with a particular type, you should take care to handle
pointers to member functions under the RECORD_TYPE case label.

The following functions and macros deal with cv-qualification of types:

TYPE_MAIN_VARIANT
This macro returns the unqualified version of a type. It may be applied to an
unqualified type, but it is not always the identity function in that case.

A few other macros and functions are usable with all types:

TYPE_SIZE
The number of bits required to represent the type, represented as an INTEGER_
CST. For an incomplete type, TYPE_SIZE will be NULL_TREE.

TYPE_ALIGN
The alignment of the type, in bits, represented as an int.

TYPE_NAME
This macro returns a declaration (in the form of a TYPE_DECL) for the type.
(Note this macro does not return an IDENTIFIER_NODE, as you might expect,
given its name!) You can look at the DECL_NAME of the TYPE_DECL to obtain
the actual name of the type. The TYPE_NAME will be NULL_TREE for a type that
is not a built-in type, the result of a typedef, or a named class type.

TYPE_CANONICAL

This macro returns the “canonical” type for the given type node. Canonical
types are used to improve performance in the C++ and Objective-C++ front
ends by allowing efficient comparison between two type nodes in same_type_p:
if the TYPE_CANONICAL values of the types are equal, the types are equivalent;
otherwise, the types are not equivalent. The notion of equivalence for canonical
types is the same as the notion of type equivalence in the language itself. For
instance,

When TYPE_CANONICAL is NULL_TREE, there is no canonical type for the given
type node. In this case, comparison between this type and any other type
requires the compiler to perform a deep, “structural” comparison to see if the
two type nodes have the same form and properties.

The canonical type for a node is always the most fundamental type in the
equivalence class of types. For instance, int is its own canonical type. A
typedef T of int will have int as its canonical type. Similarly, I* and a typedef
IP (defined to I*) will has int* as their canonical type. When building a new
type node, be sure to set TYPE_CANONICAL to the appropriate canonical type.
If the new type is a compound type (built from other types), and any of those
other types require structural equality, use SET_TYPE_STRUCTURAL_EQUALITY to
ensure that the new type also requires structural equality. Finally, if for some
reason you cannot guarantee that TYPE_CANONICAL will point to the canonical
type, use SET_TYPE_STRUCTURAL_EQUALITY to make sure that the new type—and
any type constructed based on it-requires structural equality. If you suspect



Chapter 11: GENERIC 165

that the canonical type system is miscomparing types, pass ——param verify-
canonical-types=1 to the compiler or configure with --enable-checking to
force the compiler to verify its canonical-type comparisons against the structural
comparisons; the compiler will then print any warnings if the canonical types
miscompare.

TYPE_STRUCTURAL_EQUALITY_P

This predicate holds when the node requires structural equality checks, e.g.,
when TYPE_CANONICAL is NULL_TREE.

SET_TYPE_STRUCTURAL_EQUALITY

This macro states that the type node it is given requires structural equality
checks, e.g., it sets TYPE_CANONICAL to NULL_TREE.

same_type_p

This predicate takes two types as input, and holds if they are the same type.
For example, if one type is a typedef for the other, or both are typedefs
for the same type. This predicate also holds if the two trees given as input
are simply copies of one another; i.e., there is no difference between them at
the source level, but, for whatever reason, a duplicate has been made in the
representation. You should never use == (pointer equality) to compare types;
always use same_type_p instead.

Detailed below are the various kinds of types, and the macros that can be used to access
them. Although other kinds of types are used elsewhere in G++, the types described here
are the only ones that you will encounter while examining the intermediate representation.

VOID_TYPE

Used to represent the void type.

INTEGER_TYPE

REAL_TYPE

Used to represent the various integral types, including char, short, int, long,
and long long. This code is not used for enumeration types, nor for the bool
type. The TYPE_PRECISION is the number of bits used in the representation,
represented as an unsigned int. (Note that in the general case this is not
the same value as TYPE_SIZE; suppose that there were a 24-bit integer type,
but that alignment requirements for the ABI required 32-bit alignment. Then,
TYPE_SIZE would be an INTEGER_CST for 32, while TYPE_PRECISION would be
24.) The integer type is unsigned if TYPE_UNSIGNED holds; otherwise, it is
signed.

The TYPE_MIN_VALUE is an INTEGER_CST for the smallest integer that may be
represented by this type. Similarly, the TYPE_MAX_VALUE is an INTEGER_CST for
the largest integer that may be represented by this type.

Used to represent the float, double, and long double types. The number of
bits in the floating-point representation is given by TYPE_PRECISION, as in the
INTEGER_TYPE case.

FIXED_POINT_TYPE

Used to represent the short _Fract, _Fract, long _Fract, long long _Fract,
short _Accum, _Accum, long _Accum, and long long _Accum types. The num-



166 GNU Compiler Collection (GCC) Internals

ber of bits in the fixed-point representation is given by TYPE_PRECISION, as in
the INTEGER_TYPE case. There may be padding bits, fractional bits and integral
bits. The number of fractional bits is given by TYPE_FBIT, and the number of
integral bits is given by TYPE_IBIT. The fixed-point type is unsigned if TYPE_
UNSIGNED holds; otherwise, it is signed. The fixed-point type is saturating if
TYPE_SATURATING holds; otherwise, it is not saturating.

COMPLEX_TYPE
Used to represent GCC built-in __complex__ data types. The TREE_TYPE is
the type of the real and imaginary parts.

ENUMERAL_TYPE
Used to represent an enumeration type. The TYPE_PRECISION gives (as an
int), the number of bits used to represent the type. If there are no negative
enumeration constants, TYPE_UNSIGNED will hold. The minimum and maximum
enumeration constants may be obtained with TYPE_MIN_VALUE and TYPE_MAX_
VALUE, respectively; each of these macros returns an INTEGER_CST.

The actual enumeration constants themselves may be obtained by looking at
the TYPE_VALUES. This macro will return a TREE_LIST, containing the con-
stants. The TREE_PURPOSE of each node will be an IDENTIFIER_NODE giving
the name of the constant; the TREE_VALUE will be an INTEGER_CST giving the
value assigned to that constant. These constants will appear in the order in
which they were declared. The TREE_TYPE of each of these constants will be
the type of enumeration type itself.

BOOLEAN_TYPE
Used to represent the bool type.

POINTER_TYPE
Used to represent pointer types, and pointer to data member types. The TREE_
TYPE gives the type to which this type points.

REFERENCE_TYPE
Used to represent reference types. The TREE_TYPE gives the type to which this
type refers.

FUNCTION_TYPE

Used to represent the type of non-member functions and of static member
functions. The TREE_TYPE gives the return type of the function. The TYPE_
ARG_TYPES are a TREE_LIST of the argument types. The TREE_VALUE of each
node in this list is the type of the corresponding argument; the TREE_PURPOSE is
an expression for the default argument value, if any. If the last node in the list
is void_list_node (a TREE_LIST node whose TREE_VALUE is the void_type_
node), then functions of this type do not take variable arguments. Otherwise,
they do take a variable number of arguments.

Note that in C (but not in C++) a function declared like void f () is an unpro-
totyped function taking a variable number of arguments; the TYPE_ARG_TYPES
of such a function will be NULL.



Chapter 11: GENERIC 167

METHOD_TYPE

ARRAY_TYPE

Used to represent the type of a non-static member function. Like a FUNCTION_
TYPE, the return type is given by the TREE_TYPE. The type of *this, i.e., the
class of which functions of this type are a member, is given by the TYPE_METHOD_
BASETYPE. The TYPE_ARG_TYPES is the parameter list, as for a FUNCTION_TYPE,
and includes the this argument.

Used to represent array types. The TREE_TYPE gives the type of the elements
in the array. If the array-bound is present in the type, the TYPE_DOMAIN is an
INTEGER_TYPE whose TYPE_MIN_VALUE and TYPE_MAX_VALUE will be the lower
and upper bounds of the array, respectively. The TYPE_MIN_VALUE will always
be an INTEGER_CST for zero, while the TYPE_MAX_VALUE will be one less than
the number of elements in the array, i.e., the highest value which may be used
to index an element in the array.

RECORD_TYPE

UNION_TYPE

Used to represent struct and class types, as well as pointers to member
functions and similar constructs in other languages. TYPE_FIELDS contains the
items contained in this type, each of which can be a FIELD_DECL, VAR_DECL,
CONST_DECL, or TYPE_DECL. You may not make any assumptions about the
ordering of the fields in the type or whether one or more of them overlap.

Used to represent union types. Similar to RECORD_TYPE except that all FIELD_
DECL nodes in TYPE_FIELD start at bit position zero.

QUAL_UNION_TYPE

LANG_TYPE

Used to represent part of a variant record in Ada. Similar to UNION_TYPE except
that each FIELD_DECL has a DECL_QUALIFIER field, which contains a boolean
expression that indicates whether the field is present in the object. The type
will only have one field, so each field’s DECL_QUALIFIER is only evaluated if none
of the expressions in the previous fields in TYPE_FIELDS are nonzero. Normally
these expressions will reference a field in the outer object using a PLACEHOLDER _
EXPR.

This node is used to represent a language-specific type. The front end must
handle it.

OFFSET_TYPE

This node is used to represent a pointer-to-data member. For a data member
X::m the TYPE_OFFSET_BASETYPE is X and the TREE_TYPE is the type of m.

There are variables whose values represent some of the basic types. These include:

void_type_node

A node for void.

integer_type_node

A node for int.



168 GNU Compiler Collection (GCC) Internals

unsigned_type_node.
A node for unsigned int.

char_type_node.
A node for char.

It may sometimes be useful to compare one of these variables with a type in hand, using
same_type_p.

11.4 Declarations

This section covers the various kinds of declarations that appear in the internal represen-
tation, except for declarations of functions (represented by FUNCTION_DECL nodes), which
are described in Section 11.8 [Functions], page 193.

11.4.1 Working with declarations

Some macros can be used with any kind of declaration. These include:

DECL_NAME
This macro returns an IDENTIFIER_NODE giving the name of the entity.

TREE_TYPE
This macro returns the type of the entity declared.

EXPR_FILENAME
This macro returns the name of the file in which the entity was declared, as
a charx. For an entity declared implicitly by the compiler (like __builtin_
memcpy), this will be the string "<internal>".

EXPR_LINENO
This macro returns the line number at which the entity was declared, as an
int.

DECL_ARTIFICIAL
This predicate holds if the declaration was implicitly generated by the compiler.
For example, this predicate will hold of an implicitly declared member function,
or of the TYPE_DECL implicitly generated for a class type. Recall that in C++
code like:
struct S {};

is roughly equivalent to C code like:

struct S {};

typedef struct S S;
The implicitly generated typedef declaration is represented by a TYPE_DECL
for which DECL_ARTIFICIAL holds.

The various kinds of declarations include:

LABEL_DECL
These nodes are used to represent labels in function bodies. For more informa-
tion, see Section 11.8 [Functions|, page 193. These nodes only appear in block
scopes.



Chapter 11: GENERIC 169

CONST_DECL

These nodes are used to represent enumeration constants. The value of the
constant is given by DECL_INITIAL which will be an INTEGER_CST with the
same type as the TREE_TYPE of the CONST_DECL, i.e., an ENUMERAL_TYPE.

RESULT_DECL

TYPE_DECL

VAR_DECL

PARM_DECL

These nodes represent the value returned by a function. When a value is as-
signed to a RESULT_DECL, that indicates that the value should be returned, via
bitwise copy, by the function. You can use DECL_SIZE and DECL_ALIGN on a
RESULT_DECL, just as with a VAR_DECL.

These nodes represent typedef declarations. The TREE_TYPE is the type de-
clared to have the name given by DECL_NAME. In some cases, there is no asso-
ciated name.

These nodes represent variables with namespace or block scope, as well as static
data members. The DECL_SIZE and DECL_ALIGN are analogous to TYPE_SIZE
and TYPE_ALIGN. For a declaration, you should always use the DECL_SIZE and
DECL_ALIGN rather than the TYPE_SIZE and TYPE_ALIGN given by the TREE_
TYPE, since special attributes may have been applied to the variable to give it a
particular size and alignment. You may use the predicates DECL_THIS_STATIC
or DECL_THIS_EXTERN to test whether the storage class specifiers static or
extern were used to declare a variable.

If this variable is initialized (but does not require a constructor), the DECL_
INITIAL will be an expression for the initializer. The initializer should be
evaluated, and a bitwise copy into the variable performed. If the DECL_INITIAL
is the error_mark_node, there is an initializer, but it is given by an explicit
statement later in the code; no bitwise copy is required.

GCC provides an extension that allows either automatic variables, or global
variables, to be placed in particular registers. This extension is being used for
a particular VAR_DECL if DECL_REGISTER holds for the VAR_DECL, and if DECL_
ASSEMBLER_NAME is not equal to DECL_NAME. In that case, DECL_ASSEMBLER_
NAME is the name of the register into which the variable will be placed.

Used to represent a parameter to a function. Treat these nodes similarly to VAR_
DECL nodes. These nodes only appear in the DECL_ARGUMENTS for a FUNCTION_
DECL.

The DECL_ARG_TYPE for a PARM_DECL is the type that will actually be used when
a value is passed to this function. It may be a wider type than the TREE_TYPE
of the parameter; for example, the ordinary type might be short while the
DECL_ARG_TYPE is int.

DEBUG_EXPR_DECL

Used to represent an anonymous debug-information temporary created to hold
an expression as it is optimized away, so that its value can be referenced in
debug bind statements.



170 GNU Compiler Collection (GCC) Internals

FIELD_DECL

These nodes represent non-static data members. The DECL_SIZE and DECL_
ALIGN behave as for VAR_DECL nodes. The position of the field within the
parent record is specified by a combination of three attributes. DECL_FIELD_
OFFSET is the position, counting in bytes, of the DECL_OFFSET_ALIGN-bit sized
word containing the bit of the field closest to the beginning of the structure.
DECL_FIELD_BIT_OFFSET is the bit offset of the first bit of the field within this
word; this may be nonzero even for fields that are not bit-fields, since DECL_
OFFSET_ALIGN may be greater than the natural alignment of the field’s type.

If DECL_C_BIT_FIELD holds, this field is a bit-field. In a bit-field, DECL_BIT_
FIELD_TYPE also contains the type that was originally specified for it, while

DECL_TYPE may be a modified type with lesser precision, according to the
size of the bit field.

NAMESPACE_DECL
Namespaces provide a name hierarchy for other declarations. They appear in
the DECL_CONTEXT of other _DECL nodes.

11.4.2 Internal structure

DECL nodes are represented internally as a hierarchy of structures.

11.4.2.1 Current structure hierarchy

struct tree_decl_minimal
This is the minimal structure to inherit from in order for common DECL macros
to work. The fields it contains are a unique ID, source location, context, and
name.

struct tree_decl_common
This structure inherits from struct tree_decl_minimal. It contains fields
that most DECL nodes need, such as a field to store alignment, machine mode,
size, and attributes.

struct tree_field_decl
This structure inherits from struct tree_decl_common. It is used to represent
FIELD_DECL.

struct tree_label_decl
This structure inherits from struct tree_decl_common. It is used to represent
LABEL_DECL.

struct tree_translation_unit_decl
This structure inherits from struct tree_decl_common. It is used to represent
TRANSLATION_UNIT_DECL.

struct tree_decl_with_rtl
This structure inherits from struct tree_decl_common. It contains a field to
store the low-level RTL associated with a DECL node.

struct tree_result_decl
This structure inherits from struct tree_decl_with_rtl. It is used to repre-
sent RESULT_DECL.



Chapter 11: GENERIC 171

struct tree_const_decl
This structure inherits from struct tree_decl_with_rtl. It is used to repre-
sent CONST_DECL.

struct tree_parm_decl
This structure inherits from struct tree_decl_with_rtl. It is used to repre-
sent PARM_DECL.

struct tree_decl_with_vis
This structure inherits from struct tree_decl_with_rtl. It contains fields
necessary to store visibility information, as well as a section name and assembler
name.

struct tree_var_decl
This structure inherits from struct tree_decl_with_vis. It is used to repre-
sent VAR_DECL.

struct tree_function_decl
This structure inherits from struct tree_decl_with_vis. It is used to repre-
sent FUNCTION_DECL.

11.4.2.2 Adding new DECL node types
Adding a new DECL tree consists of the following steps

Add a new tree code for the DECL node
For language specific DECL nodes, there is a ‘. def’ file in each frontend directory
where the tree code should be added. For DECL nodes that are part of the
middle-end, the code should be added to ‘tree.def’.

Create a new structure type for the DECL node
These structures should inherit from one of the existing structures in the lan-
guage hierarchy by using that structure as the first member.
struct tree_foo_decl
{

struct tree_decl_with_vis common;

}

Would create a structure name tree_foo_decl that inherits from struct tree_
decl_with_vis.

For language specific DECL nodes, this new structure type should go in the
appropriate ‘.h’ file. For DECL nodes that are part of the middle-end, the
structure type should go in ‘tree.h’.

Add a member to the tree structure enumerator for the node
For garbage collection and dynamic checking purposes, each DECL node struc-
ture type is required to have a unique enumerator value specified with it. For
language specific DECL nodes, this new enumerator value should go in the ap-
propriate ‘.def’ file. For DECL nodes that are part of the middle-end, the
enumerator values are specified in ‘treestruct.def’.



172 GNU Compiler Collection (GCC) Internals

Update union tree_node
In order to make your new structure type usable, it must be added to union
tree_node. For language specific DECL nodes, a new entry should be added to
the appropriate ‘.h’ file of the form
struct tree_foo_decl GTY ((tag ("TS_VAR_DECL"))) foo_decl;

For DECL nodes that are part of the middle-end, the additional member goes
directly into union tree_node in ‘tree.h’.

Update dynamic checking info
In order to be able to check whether accessing a named portion of union tree_
node is legal, and whether a certain DECL node contains one of the enumerated
DECL node structures in the hierarchy, a simple lookup table is used. This
lookup table needs to be kept up to date with the tree structure hierarchy, or
else checking and containment macros will fail inappropriately.

For language specific DECL nodes, their is an init_ts function in an appropri-
ate ‘.c’ file, which initializes the lookup table. Code setting up the table for
new DECL nodes should be added there. For each DECL tree code and enumera-
tor value representing a member of the inheritance hierarchy, the table should
contain 1 if that tree code inherits (directly or indirectly) from that member.
Thus, a FOO_DECL node derived from struct decl_with_rtl, and enumerator
value TS_FO0_DECL, would be set up as follows
tree_contains_struct [FOO_DECL] [TS_FOO_DECL] = 1;
tree_contains_struct [FOO_DECL] [TS_DECL_WRTL] = 1;
tree_contains_struct [FOO_DECL] [TS_DECL_COMMON] = 1;
tree_contains_struct [FOO_DECL] [TS_DECL_MINIMAL] = 1;
For DECL nodes that are part of the middle-end, the setup code goes into
‘tree.c’.

Add macros to access any new fields and flags
Each added field or flag should have a macro that is used to access it, that
performs appropriate checking to ensure only the right type of DECL nodes
access the field.

These macros generally take the following form
#define FOO_DECL_FIELDNAME(NODE) FOO_DECL_CHECK(NODE)->foo_decl.fieldname

However, if the structure is simply a base class for further structures, something
like the following should be used
#define BASE_STRUCT_CHECK(T) CONTAINS_STRUCT_CHECK(T, TS_BASE_STRUCT)
#define BASE_STRUCT_FIELDNAME(NODE) \
(BASE_STRUCT_CHECK (NODE) ->base_struct.fieldname
Reading them from the generated ‘all-tree.def’ file (which in turn includes
all the ‘tree.def’ files), ‘gencheck.c’ is used during GCC’s build to generate
the *_CHECK macros for all tree codes.

11.5 Attributes in trees

Attributes, as specified using the __attribute__ keyword, are represented internally as a
TREE_LIST. The TREE_PURPOSE is the name of the attribute, as an IDENTIFIER_NODE. The
TREE_VALUE is a TREE_LIST of the arguments of the attribute, if any, or NULL_TREE if there



Chapter 11: GENERIC 173

are no arguments; the arguments are stored as the TREE_VALUE of successive entries in the
list, and may be identifiers or expressions. The TREE_CHAIN of the attribute is the next
attribute in a list of attributes applying to the same declaration or type, or NULL_TREE if
there are no further attributes in the list.

Attributes may be attached to declarations and to types; these attributes may be accessed
with the following macros. All attributes are stored in this way, and many also cause other
changes to the declaration or type or to other internal compiler data structures.

tree DECL_ATTRIBUTES (tree decl) [Tree Macro]
This macro returns the attributes on the declaration decl.

tree TYPE_ATTRIBUTES (tree type) [Tree Macro]
This macro returns the attributes on the type type.

11.6 Expressions

The internal representation for expressions is for the most part quite straightforward. How-
ever, there are a few facts that one must bear in mind. In particular, the expression “tree”
is actually a directed acyclic graph. (For example there may be many references to the
integer constant zero throughout the source program; many of these will be represented by
the same expression node.) You should not rely on certain kinds of node being shared, nor
should you rely on certain kinds of nodes being unshared.

The following macros can be used with all expression nodes:

TREE_TYPE
Returns the type of the expression. This value may not be precisely the same
type that would be given the expression in the original program.

In what follows, some nodes that one might expect to always have type bool are docu-
mented to have either integral or boolean type. At some point in the future, the C front
end may also make use of this same intermediate representation, and at this point these
nodes will certainly have integral type. The previous sentence is not meant to imply that
the C++ front end does not or will not give these nodes integral type.

Below, we list the various kinds of expression nodes. Except where noted otherwise, the
operands to an expression are accessed using the TREE_OPERAND macro. For example, to
access the first operand to a binary plus expression expr, use:

TREE_OPERAND (expr, O)

As this example indicates, the operands are zero-indexed.

11.6.1 Constant expressions

The table below begins with constants, moves on to unary expressions, then proceeds to
binary expressions, and concludes with various other kinds of expressions:

INTEGER_CST
These nodes represent integer constants. Note that the type of these constants is
obtained with TREE_TYPE; they are not always of type int. In particular, char
constants are represented with INTEGER_CST nodes. The value of the integer
constant e is represented in an array of HOST_WIDE_INT. There are enough



174 GNU Compiler Collection (GCC) Internals

elements in the array to represent the value without taking extra elements for
redundant Os or -1. The number of elements used to represent e is available via
TREE_INT_CST_NUNITS. Element i can be extracted by using TREE_INT_CST_
ELT (e, i). TREE_INT_CST_LOW is a shorthand for TREE_INT_CST_ELT (e, 0).

The functions tree_fits_shwi_p and tree_fits_uhwi_p can be used to tell if
the value is small enough to fit in a signed HOST_WIDE_INT or an unsigned
HOST_WIDE_INT respectively. The value can then be extracted using tree_
to_shwi and tree_to_uhwi.

REAL_CST

FIXME: Talk about how to obtain representations of this constant, do compar-
isons, and so forth.

FIXED_CST
These nodes represent fixed-point constants. The type of these constants is
obtained with TREE_TYPE. TREE_FIXED_CST_PTR points to a struct fixed_
value; TREE_FIXED_CST returns the structure itself. struct fixed_value con-
tains data with the size of two HOST_BITS_PER_WIDE_INT and mode as the
associated fixed-point machine mode for data.

COMPLEX_CST
These nodes are used to represent complex number constants, that is a __
complex__ whose parts are constant nodes. The TREE_REALPART and TREE_
IMAGPART return the real and the imaginary parts respectively.

VECTOR_CST
These nodes are used to represent vector constants. Each vector constant v is
treated as a specific instance of an arbitrary-length sequence that itself contains
‘VECTOR_CST_NPATTERNS (v)’ interleaved patterns. Each pattern has the form:
{ base0, basel, basel + step, basel + step * 2, ... }

The first three elements in each pattern are enough to determine the values of
the other elements. However, if all steps are zero, only the first two elements
are needed. If in addition each basel is equal to the corresponding base0, only
the first element in each pattern is needed. The number of encoded elements
per pattern is given by ‘VECTOR_CST_NELTS_PER_PATTERN (v)’.

For example, the constant:
{o0,1, 2,6, 3,8, 4, 10, 5, 12, 6, 14, 7, 16, 8, 18 }
is interpreted as an interleaving of the sequences:
{0,2,3,4,5,6,7,81}
{1, 6,8, 10, 12, 14, 16, 18 }
where the sequences are represented by the following patterns:
base0 == 0, basel == 2, step ==
base0 == 1, basel == 6, step ==
In this case:
VECTOR_CST_NPATTERNS (v) ==
VECTOR_CST_NELTS_PER_PATTERN (v) ==
The vector is therefore encoded using the first 6 elements (‘{ 0, 1, 2, 6, 3, 8
}’), with the remaining 10 elements being implicit extensions of them.



Chapter 11: GENERIC 175

STRING_CST

Sometimes this scheme can create two possible encodings of the same vector.
For example { 0, 1 } could be seen as two patterns with one element each or
one pattern with two elements (base0 and basel). The canonical encoding is
always the one with the fewest patterns or (if both encodings have the same
number of petterns) the one with the fewest encoded elements.

‘vector_cst_encoding_nelts (v)’ gives the total number of encoded elements
in v, which is 6 in the example above. VECTOR_CST_ENCODED_ELTS (v) gives
a pointer to the elements encoded in v and VECTOR_CST_ENCODED_ELT (v, i)
accesses the value of encoded element i.

‘VECTOR_CST_DUPLICATE_P (v)’ is true if v simply contains repeated instances
of ‘VECTOR_CST_NPATTERNS (v)’ values. This is a shorthand for testing
‘VECTOR_CST_NELTS_PER_PATTERN (v) == 1’.

‘VECTOR_CST_STEPPED_P (v)’ is true if at least one pattern in v has a nonzero
step. This is a shorthand for testing ‘VECTOR_CST_NELTS_PER_PATTERN (v) ==
3.

The utility function vector_cst_elt gives the value of an arbitrary index as a
tree. vector_cst_int_elt gives the same value as a wide_int.

These nodes represent string-constants. The TREE_STRING_LENGTH returns the
length of the string, as an int. The TREE_STRING_POINTER is a char* contain-
ing the string itself. The string may not be NUL-terminated, and it may contain
embedded NUL characters. Therefore, the TREE_STRING_LENGTH includes the
trailing NUL if it is present.

For wide string constants, the TREE_STRING_LENGTH is the number of bytes in
the string, and the TREE_STRING_POINTER points to an array of the bytes of
the string, as represented on the target system (that is, as integers in the target
endianness). Wide and non-wide string constants are distinguished only by the
TREE_TYPE of the STRING_CST.

FIXME: The formats of string constants are not well-defined when the target
system bytes are not the same width as host system bytes.

POLY_INT_CST

These nodes represent invariants that depend on some target-specific runtime
parameters. They consist of NUM_POLY_INT_COEFFS coeflicients, with the first
coefficient being the constant term and the others being multipliers that are
applied to the runtime parameters.

POLY_INT_CST_ELT (x, i) references coefficient number i of POLY_INT_CST
node x. Each coefficient is an INTEGER_CST.

11.6.2 References to storage

ARRAY_REF

These nodes represent array accesses. The first operand is the array; the second
is the index. To calculate the address of the memory accessed, you must scale
the index by the size of the type of the array elements. The type of these
expressions must be the type of a component of the array. The third and



176

GNU Compiler Collection (GCC) Internals

fourth operands are used after gimplification to represent the lower bound and
component size but should not be used directly; call array_ref_low_bound and
array_ref_element_size instead.

ARRAY_RANGE_REF

These nodes represent access to a range (or “slice”) of an array. The operands
are the same as that for ARRAY_REF and have the same meanings. The type of
these expressions must be an array whose component type is the same as that
of the first operand. The range of that array type determines the amount of
data these expressions access.

TARGET _MEM_REF

ADDR_EXPR

These nodes represent memory accesses whose address directly map to an ad-
dressing mode of the target architecture. The first argument is TMR_SYMBOL and
must be a VAR_DECL of an object with a fixed address. The second argument is
TMR_BASE and the third one is TMR_INDEX. The fourth argument is TMR_STEP
and must be an INTEGER_CST. The fifth argument is TMR_OFFSET and must
be an INTEGER_CST. Any of the arguments may be NULL if the appropriate
component does not appear in the address. Address of the TARGET_MEM_REF is
determined in the following way.
&TMR_SYMBOL + TMR_BASE + TMR_INDEX * TMR_STEP + TMR_OFFSET

The sixth argument is the reference to the original memory access, which is
preserved for the purposes of the RTL alias analysis. The seventh argument is
a tag representing the results of tree level alias analysis.

These nodes are used to represent the address of an object. (These expres-
sions will always have pointer or reference type.) The operand may be another
expression, or it may be a declaration.

As an extension, GCC allows users to take the address of a label. In this case,
the operand of the ADDR_EXPR will be a LABEL_DECL. The type of such an
expression is voidx*.

If the object addressed is not an lvalue, a temporary is created, and the address
of the temporary is used.

INDIRECT_REF

MEM_REF

COMPONENT_

These nodes are used to represent the object pointed to by a pointer. The
operand is the pointer being dereferenced; it will always have pointer or refer-
ence type.

These nodes are used to represent the object pointed to by a pointer offset by
a constant. The first operand is the pointer being dereferenced; it will always
have pointer or reference type. The second operand is a pointer constant. Its
type is specifying the type to be used for type-based alias analysis.

REF

These nodes represent non-static data member accesses. The first operand is
the object (rather than a pointer to it); the second operand is the FIELD_DECL
for the data member. The third operand represents the byte offset of the field,
but should not be used directly; call component_ref_field_offset instead.



Chapter 11: GENERIC 177

11.6.3 Unary and Binary Expressions

NEGATE_EXPR
These nodes represent unary negation of the single operand, for both integer
and floating-point types. The type of negation can be determined by looking
at the type of the expression.

The behavior of this operation on signed arithmetic overflow is controlled by
the flag_wrapv and flag_trapv variables.

ABS_EXPR These nodes represent the absolute value of the single operand, for both integer
and floating-point types. This is typically used to implement the abs, labs and
11abs builtins for integer types, and the fabs, fabsf and fabsl builtins for
floating point types. The type of abs operation can be determined by looking
at the type of the expression.

This node is not used for complex types. To represent the modulus or complex
abs of a complex value, use the BUILT_IN_CABS, BUILT_IN_CABSF or BUILT_IN_
CABSL builtins, as used to implement the C99 cabs, cabsf and cabsl built-in
functions.

ABSU_EXPR
These nodes represent the absolute value of the single operand in equivalent
unsigned type such that ABSU_EXPR of TYPE_MIN is well defined.

BIT_NOT_EXPR
These nodes represent bitwise complement, and will always have integral type.
The only operand is the value to be complemented.

TRUTH_NOT_EXPR
These nodes represent logical negation, and will always have integral (or
boolean) type. The operand is the value being negated. The type of the
operand and that of the result are always of BOOLEAN_TYPE or INTEGER_TYPE.

PREDECREMENT _EXPR

PREINCREMENT_EXPR

POSTDECREMENT_EXPR

POSTINCREMENT_EXPR
These nodes represent increment and decrement expressions. The value of the
single operand is computed, and the operand incremented or decremented. In
the case of PREDECREMENT_EXPR and PREINCREMENT_EXPR, the value of the ex-
pression is the value resulting after the increment or decrement; in the case of
POSTDECREMENT _EXPR and POSTINCREMENT_EXPR is the value before the incre-
ment or decrement occurs. The type of the operand, like that of the result, will
be either integral, boolean, or floating-point.

FIX_TRUNC_EXPR
These nodes represent conversion of a floating-point value to an integer. The
single operand will have a floating-point type, while the complete expression
will have an integral (or boolean) type. The operand is rounded towards zero.



178 GNU Compiler Collection (GCC) Internals

FLOAT_EXPR
These nodes represent, conversion of an integral (or boolean) value to a floating-
point value. The single operand will have integral type, while the complete
expression will have a floating-point type.

FIXME: How is the operand supposed to be rounded? Is this dependent on
‘-mieee’?

COMPLEX_EXPR
These nodes are used to represent complex numbers constructed from two ex-
pressions of the same (integer or real) type. The first operand is the real part
and the second operand is the imaginary part.

CONJ_EXPR
These nodes represent the conjugate of their operand.

REALPART_EXPR

IMAGPART_EXPR
These nodes represent respectively the real and the imaginary parts of complex
numbers (their sole argument).

NON_LVALUE_EXPR
These nodes indicate that their one and only operand is not an lvalue. A back
end can treat these identically to the single operand.

NOP_EXPR These nodes are used to represent conversions that do not require any code-
generation. For example, conversion of a char* to an int* does not require any
code be generated; such a conversion is represented by a NOP_EXPR. The single
operand is the expression to be converted. The conversion from a pointer to a
reference is also represented with a NOP_EXPR.

CONVERT_EXPR

These nodes are similar to NOP_EXPRs, but are used in those situations where
code may need to be generated. For example, if an int* is converted to an
int code may need to be generated on some platforms. These nodes are never
used for C++-specific conversions, like conversions between pointers to different
classes in an inheritance hierarchy. Any adjustments that need to be made in
such cases are always indicated explicitly. Similarly, a user-defined conversion
is never represented by a CONVERT_EXPR, instead, the function calls are made
explicit.

FIXED_CONVERT_EXPR
These nodes are used to represent conversions that involve fixed-point values.
For example, from a fixed-point value to another fixed-point value, from an
integer to a fixed-point value, from a fixed-point value to an integer, from a
floating-point value to a fixed-point value, or from a fixed-point value to a
floating-point value.

LSHIFT_EXPR

RSHIFT_EXPR
These nodes represent left and right shifts, respectively. The first operand is
the value to shift; it will always be of integral type. The second operand is



Chapter 11: GENERIC 179

an expression for the number of bits by which to shift. Right shift should be
treated as arithmetic, i.e., the high-order bits should be zero-filled when the
expression has unsigned type and filled with the sign bit when the expression
has signed type. Note that the result is undefined if the second operand is
larger than or equal to the first operand’s type size. Unlike most nodes, these
can have a vector as first operand and a scalar as second operand.

BIT_IOR_EXPR

BIT_XOR_EXPR

BIT_AND_EXPR
These nodes represent bitwise inclusive or, bitwise exclusive or, and bitwise
and, respectively. Both operands will always have integral type.

TRUTH_ANDIF_EXPR

TRUTH_ORIF_EXPR
These nodes represent logical “and” and logical “or”, respectively. These oper-
ators are not strict; i.e., the second operand is evaluated only if the value of the
expression is not determined by evaluation of the first operand. The type of the
operands and that of the result are always of BOOLEAN_TYPE or INTEGER_TYPE.

TRUTH_AND_EXPR

TRUTH_OR_EXPR

TRUTH_XOR_EXPR
These nodes represent logical and, logical or, and logical exclusive or. They are
strict; both arguments are always evaluated. There are no corresponding oper-
ators in C or C++, but the front end will sometimes generate these expressions
anyhow, if it can tell that strictness does not matter. The type of the operands
and that of the result are always of BOOLEAN_TYPE or INTEGER_TYPE.

POINTER_PLUS_EXPR
This node represents pointer arithmetic. The first operand is always a
pointer/reference type. The second operand is always an unsigned integer
type compatible with sizetype. This and POINTER_DIFF_EXPR are the only
binary arithmetic operators that can operate on pointer types.

POINTER_DIFF_EXPR
This node represents pointer subtraction. The two operands always have
pointer/reference type. It returns a signed integer of the same precision as the
pointers. The behavior is undefined if the difference of the two pointers, seen
as infinite precision non-negative integers, does not fit in the result type. The
result does not depend on the pointer type, it is not divided by the size of the
pointed-to type.

PLUS_EXPR

MINUS_EXPR

MULT_EXPR
These nodes represent various binary arithmetic operations. Respectively, these
operations are addition, subtraction (of the second operand from the first) and
multiplication. Their operands may have either integral or floating type, but
there will never be case in which one operand is of floating type and the other
is of integral type.



180 GNU Compiler Collection (GCC) Internals

The behavior of these operations on signed arithmetic overflow is controlled by
the flag_wrapv and flag_trapv variables.

MULT_HIGHPART_EXPR
This node represents the “high-part” of a widening multiplication. For an
integral type with b bits of precision, the result is the most significant b bits of
the full 2b product.

RDIV_EXPR
This node represents a floating point division operation.

TRUNC_DIV_EXPR

FLOOR_DIV_EXPR

CEIL_DIV_EXPR

ROUND_DIV_EXPR
These nodes represent integer division operations that return an integer result.
TRUNC_DIV_EXPR rounds towards zero, FLOOR_DIV_EXPR rounds towards nega-
tive infinity, CEIL_DIV_EXPR rounds towards positive infinity and ROUND_DIV_
EXPR rounds to the closest integer. Integer division in C and C++ is truncating,
i.e. TRUNC_DIV_EXPR.

The behavior of these operations on signed arithmetic overflow, when dividing
the minimum signed integer by minus one, is controlled by the flag_wrapv and
flag_trapv variables.

TRUNC_MOD_EXPR

FLOOR_MOD_EXPR

CEIL_MOD_EXPR

ROUND_MOD_EXPR
These nodes represent the integer remainder or modulus operation. The integer
modulus of two operands a and b is defined as a - (a/b)*b where the division
calculated using the corresponding division operator. Hence for TRUNC_MOD_
EXPR this definition assumes division using truncation towards zero, i.e. TRUNC_
DIV_EXPR. Integer remainder in C and C++ uses truncating division, i.e. TRUNC_
MOD_EXPR.

EXACT_DIV_EXPR
The EXACT_DIV_EXPR code is used to represent integer divisions where the nu-
merator is known to be an exact multiple of the denominator. This allows the
backend to choose between the faster of TRUNC_DIV_EXPR, CEIL_DIV_EXPR and
FLOOR_DIV_EXPR for the current target.

LT_EXPR

LE_EXPR

GT_EXPR

GE_EXPR

LTGT_EXPR

EQ_EXPR

NE_EXPR  These nodes represent the less than, less than or equal to, greater than, greater
than or equal to, less or greater than, equal, and not equal comparison opera-
tors. The first and second operands will either be both of integral type, both of



Chapter 11: GENERIC 181

floating type or both of vector type, except for LTGT_EXPR where they will
only be both of floating type. The result type of these expressions will always
be of integral, boolean or signed integral vector type. These operations return
the result type’s zero value for false, the result type’s one value for true, and a
vector whose elements are zero (false) or minus one (true) for vectors.

For floating point comparisons, if we honor IEEE NaNs and either operand is
NaN, then NE_EXPR always returns true and the remaining operators always
return false. On some targets, comparisons against an IEEE NaN, other than
equality and inequality, may generate a floating-point exception.

ORDERED_EXPR

UNORDERED_

UNLT_EXPR
UNLE_EXPR
UNGT_EXPR
UNGE_EXPR
UNEQ_EXPR

EXPR

These nodes represent non-trapping ordered and unordered comparison opera-
tors. These operations take two floating point operands and determine whether
they are ordered or unordered relative to each other. If either operand is an
IEEE NaN, their comparison is defined to be unordered, otherwise the compar-
ison is defined to be ordered. The result type of these expressions will always
be of integral or boolean type. These operations return the result type’s zero
value for false, and the result type’s one value for true.

These nodes represent the unordered comparison operators. These operations
take two floating point operands and determine whether the operands are un-
ordered or are less than, less than or equal to, greater than, greater than or
equal to, or equal respectively. For example, UNLT_EXPR returns true if either
operand is an IEEE NaN or the first operand is less than the second. All these
operations are guaranteed not to generate a floating point exception. The re-
sult type of these expressions will always be of integral or boolean type. These
operations return the result type’s zero value for false, and the result type’s one
value for true.

MODIFY_EXPR

INIT_EXPR

These nodes represent assignment. The left-hand side is the first operand; the
right-hand side is the second operand. The left-hand side will be a VAR_DECL,
INDIRECT_REF, COMPONENT_REF, or other lvalue.

These nodes are used to represent not only assignment with ‘=’ but also com-
pound assignments (like ‘+="), by reduction to ‘=’ assignment. In other words,
the representation for ‘i += 3’ looks just like that for ‘i = i + 3’

These nodes are just like MODIFY_EXPR, but are used only when a variable
is initialized, rather than assigned to subsequently. This means that we can
assume that the target of the initialization is not used in computing its own
value; any reference to the lhs in computing the rhs is undefined.



182

GNU Compiler Collection (GCC) Internals

COMPOUND_EXPR

COND_EXPR

CALL_EXPR

These nodes represent comma-expressions. The first operand is an expression
whose value is computed and thrown away prior to the evaluation of the second
operand. The value of the entire expression is the value of the second operand.

These nodes represent 7: expressions. The first operand is of boolean or integral
type. If it evaluates to a nonzero value, the second operand should be evaluated,
and returned as the value of the expression. Otherwise, the third operand is
evaluated, and returned as the value of the expression.

The second operand must have the same type as the entire expression, unless
it unconditionally throws an exception or calls a noreturn function, in which
case it should have void type. The same constraints apply to the third operand.
This allows array bounds checks to be represented conveniently as (i >= 0 &&
i<10) ?71i: abort().

As a GNU extension, the C language front-ends allow the second operand of the
?: operator may be omitted in the source. For example, x 7 : 3 is equivalent
to x 7 x : 3, assuming that x is an expression without side effects. In the
tree representation, however, the second operand is always present, possibly
protected by SAVE_EXPR if the first argument does cause side effects.

These nodes are used to represent calls to functions, including non-static mem-
ber functions. CALL_EXPRs are implemented as expression nodes with a variable
number of operands. Rather than using TREE_OPERAND to extract them, it is
preferable to use the specialized accessor macros and functions that operate
specifically on CALL_EXPR nodes.

CALL_EXPR_FN returns a pointer to the function to call; it is always an expression
whose type is a POINTER_TYPE.

The number of arguments to the call is returned by call_expr_nargs, while
the arguments themselves can be accessed with the CALL_EXPR_ARG macro. The
arguments are zero-indexed and numbered left-to-right. You can iterate over
the arguments using FOR_EACH_CALL_EXPR_ARG, as in:

tree call, arg;

call_expr_arg_iterator iter;

FOR_EACH_CALL_EXPR_ARG (arg, iter, call)

/* arg is bound to successive arguments of call. x*/

For non-static member functions, there will be an operand corresponding to
the this pointer. There will always be expressions corresponding to all of the
arguments, even if the function is declared with default arguments and some
arguments are not explicitly provided at the call sites.

CALL_EXPRs also have a CALL_EXPR_STATIC_CHAIN operand that is used to im-
plement nested functions. This operand is otherwise null.

CLEANUP_POINT_EXPR

These nodes represent full-expressions. The single operand is an expression
to evaluate. Any destructor calls engendered by the creation of temporaries



Chapter 11: GENERIC 183

during the evaluation of that expression should be performed immediately after
the expression is evaluated.

CONSTRUCTOR

These nodes represent the brace-enclosed initializers for a structure or an ar-
ray. They contain a sequence of component values made out of a vector of
constructor_elt, which is a (INDEX, VALUE) pair.

If the TREE_TYPE of the CONSTRUCTOR is a RECORD_TYPE, UNION_TYPE or QUAL_
UNION_TYPE then the INDEX of each node in the sequence will be a FIELD_DECL
and the VALUE will be the expression used to initialize that field.

If the TREE_TYPE of the CONSTRUCTOR is an ARRAY_TYPE, then the INDEX of
each node in the sequence will be an INTEGER_CST or a RANGE_EXPR of two
INTEGER_CSTs. A single INTEGER_CST indicates which element of the array is
being assigned to. A RANGE_EXPR indicates an inclusive range of elements to
initialize. In both cases the VALUE is the corresponding initializer. It is re-
evaluated for each element of a RANGE_EXPR. If the INDEX is NULL_TREE, then
the initializer is for the next available array element.

In the front end, you should not depend on the fields appearing in any particular
order. However, in the middle end, fields must appear in declaration order. You
should not assume that all fields will be represented. Unrepresented fields will

be cleared (zeroed), unless the CONSTRUCTOR_NO_CLEARING flag is set,
in which case their value becomes undefined.

COMPOUND_LITERAL_EXPR

SAVE_EXPR

These nodes represent ISO C99 compound literals. The COMPOUND_LITERAL_
EXPR_DECL_EXPR is a DECL_EXPR containing an anonymous VAR_DECL for the
unnamed object represented by the compound literal; the DECL_INITIAL of that
VAR_DECL is a CONSTRUCTOR representing the brace-enclosed list of initializers in
the compound literal. That anonymous VAR_DECL can also be accessed directly
by the COMPOUND_LITERAL_EXPR_DECL macro.

A SAVE_EXPR represents an expression (possibly involving side effects) that is
used more than once. The side effects should occur only the first time the
expression is evaluated. Subsequent uses should just reuse the computed value.
The first operand to the SAVE_EXPR is the expression to evaluate. The side
effects should be executed where the SAVE_EXPR is first encountered in a depth-
first preorder traversal of the expression tree.

TARGET_EXPR

A TARGET_EXPR represents a temporary object. The first operand is a VAR_
DECL for the temporary variable. The second operand is the initializer for the
temporary. The initializer is evaluated and, if non-void, copied (bitwise) into
the temporary. If the initializer is void, that means that it will perform the
initialization itself.

Often, a TARGET_EXPR occurs on the right-hand side of an assignment, or as
the second operand to a comma-expression which is itself the right-hand side
of an assignment, etc. In this case, we say that the TARGET_EXPR is “normal”;



184 GNU Compiler Collection (GCC) Internals

otherwise, we say it is “orphaned”. For a normal TARGET_EXPR the temporary
variable should be treated as an alias for the left-hand side of the assignment,
rather than as a new temporary variable.

The third operand to the TARGET_EXPR, if present, is a cleanup-expression (i.e.,
destructor call) for the temporary. If this expression is orphaned, then this
expression must be executed when the statement containing this expression is
complete. These cleanups must always be executed in the order opposite to
that in which they were encountered. Note that if a temporary is created on
one branch of a conditional operator (i.e., in the second or third operand to a
COND_EXPR), the cleanup must be run only if that branch is actually executed.

VA_ARG_EXPR
This node is used to implement support for the C/C++ variable argument-
list mechanism. It represents expressions like va_arg (ap, type). Its TREE_
TYPE yields the tree representation for type and its sole argument yields the
representation for ap.

ANNOTATE_EXPR
This node is used to attach markers to an expression. The first operand is the
annotated expression, the second is an INTEGER_CST with a value from enum
annot_expr_kind, the third is an INTEGER_CST.

11.6.4 Vectors

VEC_DUPLICATE_EXPR
This node has a single operand and represents a vector in which every element
is equal to that operand.

VEC_SERIES_EXPR
This node represents a vector formed from a scalar base and step, given as the
first and second operands respectively. Element i of the result is equal to ‘base
+ ixstep’.
This node is restricted to integral types, in order to avoid specifying the round-
ing behavior for floating-point types.

VEC_LSHIFT_EXPR

VEC_RSHIFT_EXPR
These nodes represent whole vector left and right shifts, respectively. The first
operand is the vector to shift; it will always be of vector type. The second
operand is an expression for the number of bits by which to shift. Note that
the result is undefined if the second operand is larger than or equal to the first
operand’s type size.

VEC_WIDEN_MULT_HI_EXPR

VEC_WIDEN_MULT_LO_EXPR
These nodes represent widening vector multiplication of the high and low parts
of the two input vectors, respectively. Their operands are vectors that contain
the same number of elements (N) of the same integral type. The result is a
vector that contains half as many elements, of an integral type whose size is
twice as wide. In the case of VEC_WIDEN_MULT_HI_EXPR the high N/2 elements



Chapter 11: GENERIC 185

of the two vector are multiplied to produce the vector of N/2 products. In the
case of VEC_WIDEN_MULT_LO_EXPR the low N/2 elements of the two vector are
multiplied to produce the vector of N/2 products.

VEC_UNPACK_HI_EXPR

VEC_UNPACK_LO_EXPR
These nodes represent unpacking of the high and low parts of the input vector,
respectively. The single operand is a vector that contains N elements of the
same integral or floating point type. The result is a vector that contains half
as many elements, of an integral or floating point type whose size is twice as
wide. In the case of VEC_UNPACK_HI_EXPR the high N/2 elements of the vector
are extracted and widened (promoted). In the case of VEC_UNPACK_LO_EXPR
the low N/2 elements of the vector are extracted and widened (promoted).

VEC_UNPACK_FLOAT_HI_EXPR

VEC_UNPACK_FLOAT_LO_EXPR
These nodes represent unpacking of the high and low parts of the input vector,
where the values are converted from fixed point to floating point. The single
operand is a vector that contains N elements of the same integral type. The
result is a vector that contains half as many elements of a floating point type
whose size is twice as wide. In the case of VEC_UNPACK_FLOAT_HI_EXPR the high
N/2 elements of the vector are extracted, converted and widened. In the case of
VEC_UNPACK_FLOAT_LO_EXPR the low N/2 elements of the vector are extracted,
converted and widened.

VEC_UNPACK_FIX_TRUNC_HI_EXPR

VEC_UNPACK_FIX_TRUNC_LO_EXPR
These nodes represent unpacking of the high and low parts of the input vector,
where the values are truncated from floating point to fixed point. The single
operand is a vector that contains N elements of the same floating point type.
The result is a vector that contains half as many elements of an integral type
whose size is twice as wide. In the case of VEC_UNPACK_FIX_TRUNC_HI_EXPR the
high N/2 elements of the vector are extracted and converted with truncation.
In the case of VEC_UNPACK_FIX_TRUNC_LO_EXPR the low N/2 elements of the
vector are extracted and converted with truncation.

VEC_PACK_TRUNC_EXPR
This node represents packing of truncated elements of the two input vectors into
the output vector. Input operands are vectors that contain the same number
of elements of the same integral or floating point type. The result is a vector
that contains twice as many elements of an integral or floating point type whose
size is half as wide. The elements of the two vectors are demoted and merged
(concatenated) to form the output vector.

VEC_PACK_SAT_EXPR
This node represents packing of elements of the two input vectors into the
output vector using saturation. Input operands are vectors that contain the
same number of elements of the same integral type. The result is a vector that
contains twice as many elements of an integral type whose size is half as wide.



186 GNU Compiler Collection (GCC) Internals

The elements of the two vectors are demoted and merged (concatenated) to
form the output vector.

VEC_PACK_FIX_TRUNC_EXPR
This node represents packing of elements of the two input vectors into the
output vector, where the values are converted from floating point to fixed point.
Input operands are vectors that contain the same number of elements of a
floating point type. The result is a vector that contains twice as many elements
of an integral type whose size is half as wide. The elements of the two vectors
are merged (concatenated) to form the output vector.

VEC_PACK_FLOAT_EXPR
This node represents packing of elements of the two input vectors into the
output vector, where the values are converted from fixed point to floating point.
Input operands are vectors that contain the same number of elements of an
integral type. The result is a vector that contains twice as many elements of
floating point type whose size is half as wide. The elements of the two vectors
are merged (concatenated) to form the output vector.

VEC_COND_EXPR

These nodes represent 7: expressions. The three operands must be vectors of
the same size and number of elements. The second and third operands must
have the same type as the entire expression. The first operand is of signed
integral vector type. If an element of the first operand evaluates to a zero
value, the corresponding element of the result is taken from the third operand.
If it evaluates to a minus one value, it is taken from the second operand. It
should never evaluate to any other value currently, but optimizations should not
rely on that property. In contrast with a COND_EXPR, all operands are always
evaluated.

SAD_EXPR This node represents the Sum of Absolute Differences operation. The three
operands must be vectors of integral types. The first and second operand must
have the same type. The size of the vector element of the third operand must
be at lease twice of the size of the vector element of the first and second one.
The SAD is calculated between the first and second operands, added to the
third operand, and returned.

11.7 Statements

Most statements in GIMPLE are assignment statements, represented by GIMPLE_ASSIGN.
No other C expressions can appear at statement level; a reference to a volatile object is
converted into a GIMPLE_ASSIGN.

There are also several varieties of complex statements.

11.7.1 Basic Statements

ASM_EXPR

Used to represent an inline assembly statement. For an inline assembly state-
ment like:



Chapter 11: GENERIC 187

DECL_EXPR

asm ("mov x, y");

The ASM_STRING macro will return a STRING_CST node for "mov x, y". If
the original statement made use of the extended-assembly syntax, then ASM_
OUTPUTS, ASM_INPUTS, and ASM_CLOBBERS will be the outputs, inputs, and
clobbers for the statement, represented as STRING_CST nodes. The extended-
assembly syntax looks like:

asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));

The first string is the ASM_STRING, containing the instruction template. The
next two strings are the output and inputs, respectively; this statement has no
clobbers. As this example indicates, “plain” assembly statements are merely
a special case of extended assembly statements; they have no cv-qualifiers,
outputs, inputs, or clobbers. All of the strings will be NUL-terminated, and will
contain no embedded NUL-characters.

If the assembly statement is declared volatile, or if the statement was not
an extended assembly statement, and is therefore implicitly volatile, then the
predicate ASM_VOLATILE_P will hold of the ASM_EXPR.

Used to represent a local declaration. The DECL_EXPR_DECL macro can be
used to obtain the entity declared. This declaration may be a LABEL_DECL,
indicating that the label declared is a local label. (As an extension, GCC
allows the declaration of labels with scope.) In C, this declaration may be a
FUNCTION_DECL, indicating the use of the GCC nested function extension. For
more information, see Section 11.8 [Functions], page 193.

)

LABEL_EXPR

GOTO_EXPR

Used to represent a label. The LABEL_DECL declared by this statement can be
obtained with the LABEL_EXPR_LABEL macro. The IDENTIFIER_NODE giving the
name of the label can be obtained from the LABEL_DECL with DECL_NAME.

Used to represent a goto statement. The GOTO_DESTINATION will usually be
a LABEL_DECL. However, if the “computed goto” extension has been used, the
GOTO_DESTINATION will be an arbitrary expression indicating the destination.
This expression will always have pointer type.

RETURN_EXPR

LOOP_EXPR

Used to represent a return statement. Operand 0 represents the value to
return. It should either be the RESULT_DECL for the containing function, or
a MODIFY_EXPR or INIT_EXPR setting the function’s RESULT_DECL. It will be
NULL_TREE if the statement was just

return;

These nodes represent “infinite” loops. The LOOP_EXPR_BODY represents the
body of the loop. It should be executed forever, unless an EXIT_EXPR is en-
countered.



188 GNU Compiler Collection (GCC) Internals

EXIT_EXPR
These nodes represent conditional exits from the nearest enclosing LOOP_EXPR.
The single operand is the condition; if it is nonzero, then the loop should be
exited. An EXIT_EXPR will only appear within a LOOP_EXPR.

SWITCH_STMT
Used to represent a switch statement. The SWITCH_STMT_COND is the expres-
sion on which the switch is occurring. See the documentation for an IF_STMT
for more information on the representation used for the condition. The SWITCH_
STMT_BODY is the body of the switch statement. The SWITCH_STMT_TYPE is the
original type of switch expression as given in the source, before any compiler
conversions.

CASE_LABEL_EXPR
Use to represent a case label, range of case labels, or a default label. If
CASE_LOW is NULL_TREE, then this is a default label. Otherwise, if CASE_HIGH
is NULL_TREE, then this is an ordinary case label. In this case, CASE_LOW is
an expression giving the value of the label. Both CASE_LOW and CASE_HIGH
are INTEGER_CST nodes. These values will have the same type as the condition
expression in the switch statement.

Otherwise, if both CASE_LOW and CASE_HIGH are defined, the statement is a
range of case labels. Such statements originate with the extension that allows
users to write things of the form:

case 2 ... b:

The first value will be CASE_LOW, while the second will be CASE_HIGH.

DEBUG_BEGIN_STMT
Marks the beginning of a source statement, for purposes of debug information
generation.

11.7.2 Blocks

Block scopes and the variables they declare in GENERIC are expressed using the BIND_EXPR
code, which in previous versions of GCC was primarily used for the C statement-expression
extension.

Variables in a block are collected into BIND_EXPR_VARS in declaration order through their
TREE_CHAIN field. Any runtime initialization is moved out of DECL_INITIAL and into a
statement in the controlled block. When gimplifying from C or C++, this initialization
replaces the DECL_STMT. These variables will never require cleanups. The scope of these
variables is just the body

Variable-length arrays (VLAs) complicate this process, as their size often refers to vari-
ables initialized earlier in the block and their initialization involves an explicit stack allo-
cation. To handle this, we add an indirection and replace them with a pointer to stack
space allocated by means of alloca. In most cases, we also arrange for this space to be
reclaimed when the enclosing BIND_EXPR is exited, the exception to this being when there
is an explicit call to alloca in the source code, in which case the stack is left depressed on
exit of the BIND_EXPR.

A C++ program will usually contain more BIND_EXPRs than there are syntactic blocks in
the source code, since several C++ constructs have implicit scopes associated with them.



Chapter 11: GENERIC 189

On the other hand, although the C++ front end uses pseudo-scopes to handle cleanups for
objects with destructors, these don’t translate into the GIMPLE form; multiple declarations
at the same level use the same BIND_EXPR.

11.7.3 Statement Sequences

Multiple statements at the same nesting level are collected into a STATEMENT_LIST. State-
ment lists are modified and traversed using the interface in ‘tree-iterator.h’.

11.7.4 Empty Statements

Whenever possible, statements with no effect are discarded. But if they are nested within
another construct which cannot be discarded for some reason, they are instead replaced
with an empty statement, generated by build_empty_stmt. Initially, all empty statements
were shared, after the pattern of the Java front end, but this caused a lot of trouble in
practice.

An empty statement is represented as (void)O.

11.7.5 Jumps
Other jumps are expressed by either GOTO_EXPR or RETURN_EXPR.

The operand of a GOTO_EXPR must be either a label or a variable containing the address
to jump to.

The operand of a RETURN_EXPR is either NULL_TREE, RESULT_DECL, or a MODIFY_EXPR
which sets the return value. It would be nice to move the MODIFY_EXPR into a separate
statement, but the special return semantics in expand_return make that difficult. It may
still happen in the future, perhaps by moving most of that logic into expand_assignment.

11.7.6 Cleanups

Destructors for local C++ objects and similar dynamic cleanups are represented in GIM-
PLE by a TRY_FINALLY_EXPR. TRY_FINALLY_EXPR has two operands, both of which are a
sequence of statements to execute. The first sequence is executed. When it completes the
second sequence is executed.

The first sequence may complete in the following ways:

Execute the last statement in the sequence and fall off the end.

Execute a goto statement (GOTO_EXPR) to an ordinary label outside the sequence.
Execute a return statement (RETURN_EXPR).

Throw an exception. This is currently not explicitly represented in GIMPLE.

Ll

The second sequence is not executed if the first sequence completes by calling setjmp or
exit or any other function that does not return. The second sequence is also not executed
if the first sequence completes via a non-local goto or a computed goto (in general the
compiler does not know whether such a goto statement exits the first sequence or not, so
we assume that it doesn’t).

After the second sequence is executed, if it completes normally by falling off the end,
execution continues wherever the first sequence would have continued, by falling off the
end, or doing a goto, etc.



190 GNU Compiler Collection (GCC) Internals

If the second sequence is an EH_ELSE_EXPR selector, then the sequence in its first operand
is used when the first sequence completes normally, and that in its second operand is used
for exceptional cleanups, i.e., when an exception propagates out of the first sequence.

TRY_FINALLY_EXPR complicates the flow graph, since the cleanup needs to appear on
every edge out of the controlled block; this reduces the freedom to move code across these
edges. Therefore, the EH lowering pass which runs before most of the optimization passes
eliminates these expressions by explicitly adding the cleanup to each edge. Rethrowing the
exception is represented using RESX_EXPR.

11.7.7 OpenMP

All the statements starting with OMP_ represent directives and clauses used by the OpenMP
API https://www.openmp.org.

OMP_PARALLEL
Represents #pragma omp parallel [clausel ... clauseN]. It has four
operands:
Operand OMP_PARALLEL_BODY is valid while in GENERIC and High GIMPLE
forms. It contains the body of code to be executed by all the threads. During
GIMPLE lowering, this operand becomes NULL and the body is emitted linearly
after OMP_PARALLEL.
Operand OMP_PARALLEL_CLAUSES is the list of clauses associated with the di-
rective.
Operand OMP_PARALLEL_FN is created by pass_lower_omp, it contains the
FUNCTION_DECL for the function that will contain the body of the parallel
region.
Operand OMP_PARALLEL_DATA_ARG is also created by pass_lower_omp. If there
are shared variables to be communicated to the children threads, this operand
will contain the VAR_DECL that contains all the shared values and variables.

OMP_FOR
Represents #pragma omp for [clausel ... clauseN]. It has six operands:
Operand OMP_FOR_BODY contains the loop body.
Operand OMP_FOR_CLAUSES is the list of clauses associated with the directive.
Operand OMP_FOR_INIT is the loop initialization code of the form VAR = N1.
Operand OMP_FOR_COND is the loop conditional expression of the form VAR
{<,>,<=,>=} N2.
Operand OMP_FOR_INCR is the loop index increment of the form VAR {+=,-=}
INCR.

Operand OMP_FOR_PRE_BODY contains side effect code from operands OMP_FOR_
INIT, OMP_FOR_COND and OMP_FOR_INC. These side effects are part of the OMP_
FOR block but must be evaluated before the start of loop body.

The loop index variable VAR must be a signed integer variable, which is implicitly
private to each thread. Bounds N1 and N2 and the increment expression INCR
are required to be loop invariant integer expressions that are evaluated without
any synchronization. The evaluation order, frequency of evaluation and side
effects are unspecified by the standard.


https://www.openmp.org

Chapter 11: GENERIC 191

OMP_SECTIONS
Represents #pragma omp sections [clausel ... clauseN].

Operand OMP_SECTIONS_BODY contains the sections body, which in turn con-
tains a set of OMP_SECTION nodes for each of the concurrent sections delimited
by #pragma omp section.

Operand OMP_SECTIONS_CLAUSES is the list of clauses associated with the di-
rective.

OMP_SECTION
Section delimiter for OMP_SECTIONS.

OMP_SINGLE
Represents #pragma omp single.

Operand OMP_SINGLE_BODY contains the body of code to be executed by a single
thread.

Operand OMP_SINGLE_CLAUSES is the list of clauses associated with the direc-
tive.

OMP_MASTER
Represents #pragma omp master.

Operand OMP_MASTER_BODY contains the body of code to be executed by the
master thread.

OMP_ORDERED
Represents #pragma omp ordered.

Operand OMP_ORDERED_BODY contains the body of code to be executed in the
sequential order dictated by the loop index variable.

OMP_CRITICAL
Represents #pragma omp critical [name].

Operand OMP_CRITICAL_BODY is the critical section.

Operand OMP_CRITICAL_NAME is an optional identifier to label the critical sec-
tion.

OMP_RETURN
This does not represent any OpenMP directive, it is an artificial marker to
indicate the end of the body of an OpenMP. It is used by the flow graph
(tree-cfg.c) and OpenMP region building code (omp-low.c).

OMP_CONTINUE
Similarly, this instruction does not represent an OpenMP directive, it is used by
OMP_FOR (and similar codes) as well as OMP_SECTIONS to mark the place where
the code needs to loop to the next iteration, or the next section, respectively.

In some cases, OMP_CONTINUE is placed right before OMP_RETURN. But if there
are cleanups that need to occur right after the looping body, it will be emitted
between OMP_CONTINUE and OMP_RETURN.

OMP_ATOMIC
Represents #pragma omp atomic.



192 GNU Compiler Collection (GCC) Internals

Operand 0 is the address at which the atomic operation is to be performed.

Operand 1 is the expression to evaluate. The gimplifier tries three alternative
code generation strategies. Whenever possible, an atomic update built-in is
used. If that fails, a compare-and-swap loop is attempted. If that also fails, a
regular critical section around the expression is used.

OMP_CLAUSE

Represents clauses associated with one of the OMP_ directives. Clauses are
represented by separate subcodes defined in ‘tree.h’. Clauses codes can be one
of: OMP_CLAUSE_PRIVATE, OMP_CLAUSE_SHARED, OMP_CLAUSE_FIRSTPRIVATE,
OMP_CLAUSE_LASTPRIVATE, OMP_CLAUSE_COPYIN, OMP_CLAUSE_COPYPRIVATE,
OMP_CLAUSE_TF, OMP_CLAUSE_NUM_THREADS, OMP_CLAUSE_SCHEDULE,
OMP_CLAUSE_NOWAIT, OMP_CLAUSE_ORDERED, OMP_CLAUSE_DEFAULT,
OMP_CLAUSE_REDUCTION, OMP_CLAUSE_COLLAPSE, OMP_CLAUSE_UNTIED,
OMP_CLAUSE_FINAL, and OMP_CLAUSE_MERGEABLE. Each code represents the
corresponding OpenMP clause.

Clauses associated with the same directive are chained together via
OMP_CLAUSE_CHAIN. Those clauses that accept a list of variables are restricted
to exactly one, accessed with OMP_CLAUSE_VAR. Therefore, multiple variables
under the same clause C need to be represented as multiple C clauses chained
together. This facilitates adding new clauses during compilation.

11.7.8 OpenACC

All the statements starting with OACC_ represent directives and clauses used by the Ope-
nACC API https://www.openacc.org.

OACC_CACHE
Represents #pragma acc cache (var ...).

OACC_DATA
Represents #pragma acc data [clausel ... clauseN].

OACC_DECLARE
Represents #pragma acc declare [clausel ... clauseN].

OACC_ENTER_DATA
Represents #pragma acc enter data [clausel ... clauseN].

OACC_EXIT_DATA
Represents #pragma acc exit data [clausel ... clauseN].

OACC_HOST_DATA
Represents #pragma acc host_data [clausel ... clauseN].

OACC_KERNELS
Represents #pragma acc kernels [clausel ... clauseN].

OACC_LOOP
Represents #pragma acc loop [clausel ... clauseN].

See the description of the OMP_FOR code.


https://www.openacc.org

Chapter 11: GENERIC 193

OACC_PARALLEL

Represents #pragma acc parallel [clausel ... clauseN].

OACC_SERIAL

Represents #pragma acc serial [clausel ... clauseN].

OACC_UPDATE

Represents #pragma acc update [clausel ... clauseN].

11.8 Functions

A function is represented by a FUNCTION_DECL node. It stores the basic pieces of the function
such as body, parameters, and return type as well as information on the surrounding context,
visibility, and linkage.

11.8.1 Function Basics

A function has four core parts: the name, the parameters, the result, and the body. The
following macros and functions access these parts of a FUNCTION_DECL as well as other basic

features:

DECL_NAME

This macro returns the unqualified name of the function, as an IDENTIFIER_
NODE. For an instantiation of a function template, the DECL_NAME is the unqual-
ified name of the template, not something like f<int>. The value of DECL_NAME
is undefined when used on a constructor, destructor, overloaded operator, or
type-conversion operator, or any function that is implicitly generated by the
compiler. See below for macros that can be used to distinguish these cases.

DECL_ASSEMBLER_NAME

This macro returns the mangled name of the function, also an IDENTIFIER_
NODE. This name does not contain leading underscores on systems that prefix
all identifiers with underscores. The mangled name is computed in the same
way on all platforms; if special processing is required to deal with the object
file format used on a particular platform, it is the responsibility of the back end
to perform those modifications. (Of course, the back end should not modify
DECL_ASSEMBLER_NAME itself.)

Using DECL_ASSEMBLER_NAME will cause additional memory to be allocated (for
the mangled name of the entity) so it should be used only when emitting assem-
bly code. It should not be used within the optimizers to determine whether or
not two declarations are the same, even though some of the existing optimizers
do use it in that way. These uses will be removed over time.

DECL_ARGUMENTS

This macro returns the PARM_DECL for the first argument to the function. Sub-
sequent PARM_DECL nodes can be obtained by following the TREE_CHAIN links.

DECL_RESULT

This macro returns the RESULT_DECL for the function.

DECL_SAVED_TREE

This macro returns the complete body of the function.



194 GNU Compiler Collection (GCC) Internals

TREE_TYPE
This macro returns the FUNCTION_TYPE or METHOD_TYPE for the function.

DECL_INITIAL
A function that has a definition in the current translation unit will have a non-
NULL DECL_INITIAL. However, back ends should not make use of the particular
value given by DECL_INITIAL.

It should contain a tree of BLOCK nodes that mirrors the scopes that variables
are bound in the function. Each block contains a list of decls declared in a
basic block, a pointer to a chain of blocks at the next lower scope level, then
a pointer to the next block at the same level and a backpointer to the parent
BLOCK or FUNCTION_DECL. So given a function as follows:

void foo()
{
int a;
{
int b;
}
int c;

}

you would get the following:

tree foo = FUNCTION_DECL;

tree decl_a VAR_DECL;

tree decl_b VAR_DECL;

tree decl_c VAR_DECL;

tree block_a BLOCK;

tree block_b BLOCK;

tree block_c BLOCK;
BLOCK_VARS(block_a) = decl_a;
BLOCK_SUBBLOCKS (block_a) = block_b;
BLOCK_CHAIN(block_a) = block_c;
BLOCK_SUPERCONTEXT (block_a) = foo;
BLOCK_VARS (block_b) = decl_b;
BLOCK_SUPERCONTEXT (block_b) = block_a;
BLOCK_VARS (block_c) = decl_c;
BLOCK_SUPERCONTEXT (block_c) = foo;
DECL_INITIAL(foo) = block_a;

11.8.2 Function Properties

To determine the scope of a function, you can use the DECL_CONTEXT macro. This macro
will return the class (either a RECORD_TYPE or a UNION_TYPE) or namespace (a NAMESPACE_
DECL) of which the function is a member. For a virtual function, this macro returns the
class in which the function was actually defined, not the base class in which the virtual
declaration occurred.

In C, the DECL_CONTEXT for a function maybe another function. This representation
indicates that the GNU nested function extension is in use. For details on the semantics of
nested functions, see the GCC Manual. The nested function can refer to local variables in
its containing function. Such references are not explicitly marked in the tree structure; back
ends must look at the DECL_CONTEXT for the referenced VAR_DECL. If the DECL_CONTEXT
for the referenced VAR_DECL is not the same as the function currently being processed, and



Chapter 11: GENERIC 195

neither DECL_EXTERNAL nor TREE_STATIC hold, then the reference is to a local variable in a
containing function, and the back end must take appropriate action.

DECL_EXTERNAL
This predicate holds if the function is undefined.

TREE_PUBLIC
This predicate holds if the function has external linkage.

TREE_STATIC
This predicate holds if the function has been defined.

TREE_THIS_VOLATILE
This predicate holds if the function does not return normally.

TREE_READONLY
This predicate holds if the function can only read its arguments.

DECL_PURE_P
This predicate holds if the function can only read its arguments, but may also
read global memory.

DECL_VIRTUAL_P
This predicate holds if the function is virtual.

DECL_ARTIFICIAL
This macro holds if the function was implicitly generated by the compiler,
rather than explicitly declared. In addition to implicitly generated class member
functions, this macro holds for the special functions created to implement static
initialization and destruction, to compute run-time type information, and so

forth.

DECL_FUNCTION_SPECIFIC_TARGET
This macro returns a tree node that holds the target options that are to be
used to compile this particular function or NULL_TREE if the function is to be
compiled with the target options specified on the command line.

DECL_FUNCTION_SPECIFIC_OPTIMIZATION
This macro returns a tree node that holds the optimization options that are to
be used to compile this particular function or NULL_TREE if the function is to
be compiled with the optimization options specified on the command line.

11.9 Language-dependent trees

Front ends may wish to keep some state associated with various GENERIC trees while
parsing. To support this, trees provide a set of flags that may be used by the front end.
They are accessed using TREE_LANG_FLAG_n where ‘n’ is currently 0 through 6.

If necessary, a front end can use some language-dependent tree codes in its GENERIC
representation, so long as it provides a hook for converting them to GIMPLE and doesn’t
expect them to work with any (hypothetical) optimizers that run before the conversion to
GIMPLE. The intermediate representation used while parsing C and C++ looks very little
like GENERIC, but the C and C++ gimplifier hooks are perfectly happy to take it as input
and spit out GIMPLE.



196 GNU Compiler Collection (GCC) Internals

11.10 C and C++ Trees

This section documents the internal representation used by GCC to represent C and C++
source programs. When presented with a C or C++ source program, GCC parses the
program, performs semantic analysis (including the generation of error messages), and then
produces the internal representation described here. This representation contains a complete
representation for the entire translation unit provided as input to the front end. This
representation is then typically processed by a code-generator in order to produce machine
code, but could also be used in the creation of source browsers, intelligent editors, automatic
documentation generators, interpreters, and any other programs needing the ability to
process C or C++ code.

This section explains the internal representation. In particular, it documents the internal
representation for C and C++ source constructs, and the macros, functions, and variables
that can be used to access these constructs. The C++ representation is largely a superset
of the representation used in the C front end. There is only one construct used in C that
does not appear in the C++ front end and that is the GNU “nested function” extension.
Many of the macros documented here do not apply in C because the corresponding language
constructs do not appear in C.

The C and C++ front ends generate a mix of GENERIC trees and ones specific to C and
C++. These language-specific trees are higher-level constructs than the ones in GENERIC to
make the parser’s job easier. This section describes those trees that aren’t part of GENERIC
as well as aspects of GENERIC trees that are treated in a language-specific manner.

If you are developing a “back end”, be it is a code-generator or some other tool, that uses
this representation, you may occasionally find that you need to ask questions not easily
answered by the functions and macros available here. If that situation occurs, it is quite
likely that GCC already supports the functionality you desire, but that the interface is
simply not documented here. In that case, you should ask the GCC maintainers (via mail
to gcclgec.gnu.org) about documenting the functionality you require. Similarly, if you
find yourself writing functions that do not deal directly with your back end, but instead
might be useful to other people using the GCC front end, you should submit your patches
for inclusion in GCC.

11.10.1 Types for C++

In C++, an array type is not qualified; rather the type of the array elements is qualified.
This situation is reflected in the intermediate representation. The macros described here
will always examine the qualification of the underlying element type when applied to an
array type. (If the element type is itself an array, then the recursion continues until a
non-array type is found, and the qualification of this type is examined.) So, for example,
CP_TYPE_CONST_P will hold of the type const int () [7], denoting an array of seven ints.

The following functions and macros deal with cv-qualification of types:

cp_type_quals
This function returns the set of type qualifiers applied to this type. This value
is TYPE_UNQUALIFIED if no qualifiers have been applied. The TYPE_QUAL_CONST
bit is set if the type is const-qualified. The TYPE_QUAL_VOLATILE bit is set if
the type is volatile-qualified. The TYPE_QUAL_RESTRICT bit is set if the type
is restrict-qualified.


mailto:gcc@gcc.gnu.org

Chapter 11: GENERIC 197

CP_TYPE_CONST_P
This macro holds if the type is const-qualified.

CP_TYPE_VOLATILE_P
This macro holds if the type is volatile-qualified.

CP_TYPE_RESTRICT_P
This macro holds if the type is restrict-qualified.

CP_TYPE_CONST_NON_VOLATILE_P
This predicate holds for a type that is const-qualified, but not volatile-
qualified; other cv-qualifiers are ignored as well: only the const-ness is tested.

A few other macros and functions are usable with all types:

TYPE_SIZE
The number of bits required to represent the type, represented as an INTEGER_
CST. For an incomplete type, TYPE_SIZE will be NULL_TREE.

TYPE_ALIGN
The alignment of the type, in bits, represented as an int.

TYPE_NAME
This macro returns a declaration (in the form of a TYPE_DECL) for the type.
(Note this macro does not return an IDENTIFIER_NODE, as you might expect,
given its name!) You can look at the DECL_NAME of the TYPE_DECL to obtain
the actual name of the type. The TYPE_NAME will be NULL_TREE for a type that
is not a built-in type, the result of a typedef, or a named class type.

CP_INTEGRAL_TYPE
This predicate holds if the type is an integral type. Notice that in C++, enu-
merations are not integral types.

ARITHMETIC_TYPE_P
This predicate holds if the type is an integral type (in the C++ sense) or a
floating point type.

CLASS_TYPE_P
This predicate holds for a class-type.

TYPE_BUILT_IN
This predicate holds for a built-in type.

TYPE_PTRDATAMEM_P
This predicate holds if the type is a pointer to data member.

TYPE_PTR_P
This predicate holds if the type is a pointer type, and the pointee is not a data
member.

TYPE_PTRFN_P
This predicate holds for a pointer to function type.

TYPE_PTROB_P
This predicate holds for a pointer to object type. Note however that it does not
hold for the generic pointer to object type void *. You may use TYPE_PTROBV_P
to test for a pointer to object type as well as void *.



198 GNU Compiler Collection (GCC) Internals

The table below describes types specific to C and C++ as well as language-dependent info
about GENERIC types.

POINTER_TYPE
Used to represent pointer types, and pointer to data member types. If TREE_
TYPE is a pointer to data member type, then TYPE_PTRDATAMEM_P will hold. For
a pointer to data member type of the form ‘T X: :*’, TYPE_PTRMEM_CLASS_TYPE
will be the type X, while TYPE_PTRMEM_POINTED_TO_TYPE will be the type T.

RECORD_TYPE
Used to represent struct and class types in C and C++. If TYPE_PTRMEMFUNC_
P holds, then this type is a pointer-to-member type. In that case, the TYPE_
PTRMEMFUNC_FN_TYPE is a POINTER_TYPE pointing to a METHOD_TYPE. The
METHOD_TYPE is the type of a function pointed to by the pointer-to-member
function. If TYPE_PTRMEMFUNC_P does not hold, this type is a class type. For
more information, see Section 11.10.3 [Classes|, page 199.

UNKNOWN_TYPE
This node is used to represent a type the knowledge of which is insufficient for
a sound processing.

TYPENAME_TYPE
Used to represent a construct of the form typename T::A. The TYPE_CONTEXT
is T; the TYPE_NAME is an IDENTIFIER_NODE for A. If the type is specified via a
template-id, then TYPENAME_TYPE_FULLNAME yields a TEMPLATE_ID_EXPR. The
TREE_TYPE is non-NULL if the node is implicitly generated in support for the
implicit typename extension; in which case the TREE_TYPE is a type node for
the base-class.

TYPEOF_TYPE
Used to represent the __typeof__ extension. The TYPE_FIELDS is the expres-
sion the type of which is being represented.

11.10.2 Namespaces

The root of the entire intermediate representation is the variable global_namespace. This is
the namespace specified with : : in C++ source code. All other namespaces, types, variables,
functions, and so forth can be found starting with this namespace.

However, except for the fact that it is distinguished as the root of the representation,
the global namespace is no different from any other namespace. Thus, in what follows, we
describe namespaces generally, rather than the global namespace in particular.

A namespace is represented by a NAMESPACE_DECL node.
The following macros and functions can be used on a NAMESPACE_DECL:

DECL_NAME
This macro is used to obtain the IDENTIFIER_NODE corresponding to the un-
qualified name of the name of the namespace (see Section 11.2.2 [Identifiers],
page 163). The name of the global namespace is ‘::’, even though in C++
the global namespace is unnamed. However, you should use comparison with

global_namespace, rather than DECL_NAME to determine whether or not a



Chapter 11: GENERIC 199

namespace is the global one. An unnamed namespace will have a DECL_NAME
equal to anonymous_namespace_name. Within a single translation unit, all un-
named namespaces will have the same name.

DECL_CONTEXT
This macro returns the enclosing namespace. The DECL_CONTEXT for the
global_namespace is NULL_TREE.

DECL_NAMESPACE_ALIAS
If this declaration is for a namespace alias, then DECL_NAMESPACE_ALIAS is the
namespace for which this one is an alias.

Do not attempt to use cp_namespace_decls for a namespace which is an alias.
Instead, follow DECL_NAMESPACE_ALIAS links until you reach an ordinary, non-
alias, namespace, and call cp_namespace_decls there.

DECL_NAMESPACE_STD_P
This predicate holds if the namespace is the special : :std namespace.

cp_namespace_decls
This function will return the declarations contained in the namespace, including
types, overloaded functions, other namespaces, and so forth. If there are no dec-
larations, this function will return NULL_TREE. The declarations are connected
through their TREE_CHAIN fields.

Although most entries on this list will be declarations, TREE_LIST nodes may
also appear. In this case, the TREE_VALUE will be an OVERLOAD. The value of the
TREE_PURPOSE is unspecified; back ends should ignore this value. As with the
other kinds of declarations returned by cp_namespace_decls, the TREE_CHAIN
will point to the next declaration in this list.

For more information on the kinds of declarations that can occur on this list,
See Section 11.4 [Declarations]|, page 168. Some declarations will not appear on
this list. In particular, no FIELD_DECL, LABEL_DECL, or PARM_DECL nodes will
appear here.

This function cannot be used with namespaces that have DECL_NAMESPACE_
ALTAS set.

11.10.3 Classes

Besides namespaces, the other high-level scoping construct in C++ is the class. (Through-
out this manual the term class is used to mean the types referred to in the ANSI/ISO
C++ Standard as classes; these include types defined with the class, struct, and union
keywords.)

A class type is represented by either a RECORD_TYPE or a UNION_TYPE. A class declared
with the union tag is represented by a UNION_TYPE, while classes declared with either the
struct or the class tag are represented by RECORD_TYPEs. You can use the CLASSTYPE_
DECLARED_CLASS macro to discern whether or not a particular type is a class as opposed
to a struct. This macro will be true only for classes declared with the class tag.

Almost all members are available on the TYPE_FIELDS list. Given one member, the next
can be found by following the TREE_CHAIN. You should not depend in any way on the
order in which fields appear on this list. All nodes on this list will be ‘DECL’ nodes. A



200 GNU Compiler Collection (GCC) Internals

FIELD_DECL is used to represent a non-static data member, a VAR_DECL is used to represent
a static data member, and a TYPE_DECL is used to represent a type. Note that the CONST_
DECL for an enumeration constant will appear on this list, if the enumeration type was
declared in the class. (Of course, the TYPE_DECL for the enumeration type will appear here
as well.) There are no entries for base classes on this list. In particular, there is no FIELD_
DECL for the “base-class portion” of an object. If a function member is overloaded, each
of the overloaded functions appears; no OVERLOAD nodes appear on the TYPE_FIELDS list.
Implicitly declared functions (including default constructors, copy constructors, assignment
operators, and destructors) will appear on this list as well.

The TYPE_VFIELD is a compiler-generated field used to point to virtual function tables.
It may or may not appear on the TYPE_FIELDS list. However, back ends should handle the
TYPE_VFIELD just like all the entries on the TYPE_FIELDS list.

Every class has an associated binfo, which can be obtained with TYPE_BINFO. Binfos
are used to represent base-classes. The binfo given by TYPE_BINFO is the degenerate case,
whereby every class is considered to be its own base-class. The base binfos for a particular
binfo are held in a vector, whose length is obtained with BINFO_N_BASE_BINFOS. The base
binfos themselves are obtained with BINFO_BASE_BINFO and BINFO_BASE_ITERATE. To add
a new binfo, use BINFO_BASE_APPEND. The vector of base binfos can be obtained with
BINFO_BASE_BINFOS, but normally you do not need to use that. The class type associated
with a binfo is given by BINFO_TYPE. It is not always the case that BINFO_TYPE (TYPE_
BINFO (x)), because of typedefs and qualified types. Neither is it the case that TYPE_BINFO
(BINFO_TYPE (y)) is the same binfo as y. The reason is that if y is a binfo representing a
base-class B of a derived class D, then BINFO_TYPE (y) will be B, and TYPE_BINFO (BINFO_
TYPE (y)) will be B as its own base-class, rather than as a base-class of D.

The access to a base type can be found with BINFO_BASE_ACCESS. This will produce
access_public_node, access_private_node or access_protected_node. If bases are
always public, BINFO_BASE_ACCESSES may be NULL.

BINFO_VIRTUAL_P is used to specify whether the binfo is inherited virtually or not. The
other flags, BINFO_FLAG_O to BINFO_FLAG_6, can be used for language specific use.

The following macros can be used on a tree node representing a class-type.

LOCAL_CLASS_P
This predicate holds if the class is local class i.e. declared inside a function
body.

TYPE_POLYMORPHIC_P
This predicate holds if the class has at least one virtual function (declared or
inherited).

TYPE_HAS_DEFAULT_CONSTRUCTOR
This predicate holds whenever its argument represents a class-type with default
constructor.

CLASSTYPE_HAS_MUTABLE
TYPE_HAS_MUTABLE_P
These predicates hold for a class-type having a mutable data member.

CLASSTYPE_NON_POD_P
This predicate holds only for class-types that are not PODs.



Chapter 11: GENERIC 201

TYPE_HAS_NEW_OPERATOR
This predicate holds for a class-type that defines operator new.

TYPE_HAS_ARRAY_NEW_OPERATOR
This predicate holds for a class-type for which operator new[] is defined.

TYPE_OVERLOADS_CALL_EXPR
This predicate holds for class-type for which the function call operator() is
overloaded.

TYPE_OVERLOADS_ARRAY_REF
This predicate holds for a class-type that overloads operator[]

TYPE_OVERLOADS_ARROW
This predicate holds for a class-type for which operator-> is overloaded.

11.10.4 Functions for C++

A function is represented by a FUNCTION_DECL node. A set of overloaded functions is
sometimes represented by an OVERLOAD node.

An OVERLOAD node is not a declaration, so none of the ‘DECL_" macros should be used on
an OVERLOAD. An OVERLOAD node is similar to a TREE_LIST. Use OVL_CURRENT to get the
function associated with an OVERLOAD node; use OVL_NEXT to get the next OVERLOAD node
in the list of overloaded functions. The macros OVL_CURRENT and OVL_NEXT are actually
polymorphic; you can use them to work with FUNCTION_DECL nodes as well as with overloads.
In the case of a FUNCTION_DECL, OVL_CURRENT will always return the function itself, and
OVL_NEXT will always be NULL_TREE.

To determine the scope of a function, you can use the DECL_CONTEXT macro. This macro
will return the class (either a RECORD_TYPE or a UNION_TYPE) or namespace (a NAMESPACE_
DECL) of which the function is a member. For a virtual function, this macro returns the
class in which the function was actually defined, not the base class in which the virtual
declaration occurred.

If a friend function is defined in a class scope, the DECL_FRIEND_CONTEXT macro can be
used to determine the class in which it was defined. For example, in

class C { friend void £() {} };
the DECL_CONTEXT for f will be the global_namespace, but the DECL_FRIEND_CONTEXT will
be the RECORD_TYPE for C.

The following macros and functions can be used on a FUNCTION_DECL:

DECL_MAIN_P
This predicate holds for a function that is the program entry point ::code.

DECL_LOCAL_FUNCTION_P
This predicate holds if the function was declared at block scope, even though
it has a global scope.

DECL_ANTICIPATED
This predicate holds if the function is a built-in function but its prototype is
not yet explicitly declared.

DECL_EXTERN_C_FUNCTION_P
This predicate holds if the function is declared as an ‘extern "C"’ function.



202 GNU Compiler Collection (GCC) Internals

DECL_LINKONCE_P
This macro holds if multiple copies of this function may be emitted in various
translation units. It is the responsibility of the linker to merge the various
copies. Template instantiations are the most common example of functions
for which DECL_LINKONCE_P holds; G++ instantiates needed templates in all
translation units which require them, and then relies on the linker to remove
duplicate instantiations.

FIXME: This macro is not yet implemented.

DECL_FUNCTION_MEMBER_P
This macro holds if the function is a member of a class, rather than a member
of a namespace.

DECL_STATIC_FUNCTION_P
This predicate holds if the function a static member function.

DECL_NONSTATIC_MEMBER_FUNCTION_P
This macro holds for a non-static member function.

DECL_CONST_MEMFUNC_P
This predicate holds for a const-member function.

DECL_VOLATILE_MEMFUNC_P
This predicate holds for a volatile-member function.

DECL_CONSTRUCTOR_P
This macro holds if the function is a constructor.

DECL_NONCONVERTING_P
This predicate holds if the constructor is a non-converting constructor.

DECL_COMPLETE_CONSTRUCTOR_P
This predicate holds for a function which is a constructor for an object of a
complete type.

DECL_BASE_CONSTRUCTOR_P
This predicate holds for a function which is a constructor for a base class sub-
object.

DECL_COPY_CONSTRUCTOR_P
This predicate holds for a function which is a copy-constructor.

DECL_DESTRUCTOR_P
This macro holds if the function is a destructor.

DECL_COMPLETE_DESTRUCTOR_P
This predicate holds if the function is the destructor for an object a complete

type.

DECL_OVERLOADED_QOPERATOR_P
This macro holds if the function is an overloaded operator.

DECL_CONV_FN_P
This macro holds if the function is a type-conversion operator.



Chapter 11: GENERIC 203

DECL_GLOBAL_CTOR_P
This predicate holds if the function is a file-scope initialization function.

DECL_GLOBAL_DTOR_P
This predicate holds if the function is a file-scope finalization function.

DECL_THUNK_P
This predicate holds if the function is a thunk.

These functions represent stub code that adjusts the this pointer and then
jumps to another function. When the jumped-to function returns, control is
transferred directly to the caller, without returning to the thunk. The first
parameter to the thunk is always the this pointer; the thunk should add THUNK_
DELTA to this wﬂue.(T?KiTHUNK_DELTAisaD.int,notan,INTEGER_CSTJ
Then, if THUNK_VCALL_OFFSET GulINTEGER_CST)isnonzen)theZMﬁlmted.this
pointer must be adjusted again. The complete calculation is given by the fol-
lowing pseudo-code:

this += THUNK_DELTA
if (THUNK_VCALL_OFFSET)
this += (*((ptrdiff_t **) this)) [THUNK_VCALL_OFFSET]

Finally, the thunk should jump to the location given by DECL_INITIAL; this
will always be an expression for the address of a function.

DECL_NON_THUNK_FUNCTION_P
This predicate holds if the function is not a thunk function.

GLOBAL_INIT_PRIORITY
If either DECL_GLOBAL_CTOR_P or DECL_GLOBAL_DTOR_P holds, then this gives
the initialization priority for the function. The linker will arrange that all
functions for which DECL_GLOBAL_CTOR_P holds are run in increasing order of
priority before main is called. When the program exits, all functions for which
DECL_GLOBAL_DTOR_P holds are run in the reverse order.

TYPE_RAISES_EXCEPTIONS
This macro returns the list of exceptions that a (member-)function can raise.
The returned list, if non NULL, is comprised of nodes whose TREE_VALUE repre-
sents a type.

TYPE_NOTHROW_P
This predicate holds when the exception-specification of its arguments is of the
form ‘()’.

DECL_ARRAY_DELETE_OPERATOR_P
This predicate holds if the function an overloaded operator deletel[].

11.10.5 Statements for C++

A function that has a definition in the current translation unit will have a non-NULL DECL_
INITIAL. However, back ends should not make use of the particular value given by DECL_
INITIAL.

The DECL_SAVED_TREE macro will give the complete body of the function.



204 GNU Compiler Collection (GCC) Internals

11.10.5.1 Statements

There are tree nodes corresponding to all of the source-level statement constructs, used
within the C and C++ frontends. These are enumerated here, together with a list of the
various macros that can be used to obtain information about them. There are a few macros
that can be used with all statements:

STMT_IS_FULL_EXPR_P
In C++, statements normally constitute “full expressions”; temporaries created
during a statement are destroyed when the statement is complete. However,
G++ sometimes represents expressions by statements; these statements will not
have STMT_IS_FULL_EXPR_P set. Temporaries created during such statements
should be destroyed when the innermost enclosing statement with STMT_IS_
FULL_EXPR_P set is exited.

Here is the list of the various statement nodes, and the macros used to access them.
This documentation describes the use of these nodes in non-template functions (including
instantiations of template functions). In template functions, the same nodes are used, but
sometimes in slightly different ways.

Many of the statements have substatements. For example, a while loop will have a body,
which is itself a statement. If the substatement is NULL_TREE, it is considered equivalent to
a statement consisting of a single ;, i.e., an expression statement in which the expression has
been omitted. A substatement may in fact be a list of statements, connected via their TREE_
CHAINs. So, you should always process the statement tree by looping over substatements,
like this:

void process_stmt (stmt)
tree stmt;

{
while (stmt)
{
switch (TREE_CODE (stmt))
{
case IF_STMT:
process_stmt (THEN_CLAUSE (stmt));
/* More processing here. */
break;
}
stmt = TREE_CHAIN (stmt);
}
}

In other words, while the then clause of an if statement in C++ can be only one statement
(although that one statement may be a compound statement), the intermediate represen-
tation will sometimes use several statements chained together.

BREAK_STMT
Used to represent a break statement. There are no additional fields.

CLEANUP_STMT
Used to represent an action that should take place upon exit from the enclos-
ing scope. Typically, these actions are calls to destructors for local objects,



Chapter 11: GENERIC 205

but back ends cannot rely on this fact. If these nodes are in fact representing
such destructors, CLEANUP_DECL will be the VAR_DECL destroyed. Otherwise,
CLEANUP_DECL will be NULL_TREE. In any case, the CLEANUP_EXPR is the ex-
pression to execute. The cleanups executed on exit from a scope should be run
in the reverse order of the order in which the associated CLEANUP_STMTs were
encountered.

CONTINUE_STMT

CTOR_STMT

DO_STMT

Used to represent a continue statement. There are no additional fields.

Used to mark the beginning (if CTOR_BEGIN_P holds) or end (if CTOR_END_P
holds of the main body of a constructor. See also SUBOBJECT for more informa-
tion on how to use these nodes.

Used to represent a do loop. The body of the loop is given by DO_BODY while
the termination condition for the loop is given by DO_COND. The condition for
a do-statement is always an expression.

EMPTY_CLASS_EXPR

EXPR_STMT

FOR_STMT

HANDLER

IF_STMT

Used to represent a temporary object of a class with no data whose address is
never taken. (All such objects are interchangeable.) The TREE_TYPE represents
the type of the object.

Used to represent an expression statement. Use EXPR_STMT_EXPR to obtain the
expression.

Used to represent a for statement. The FOR_INIT_STMT is the initialization
statement for the loop. The FOR_COND is the termination condition. The FOR_
EXPR is the expression executed right before the FOR_COND on each loop iteration;
often, this expression increments a counter. The body of the loop is given by
FOR_BODY. Note that FOR_INIT_STMT and FOR_BODY return statements, while
FOR_COND and FOR_EXPR return expressions.

Used to represent a C++ catch block. The HANDLER_TYPE is the type of ex-
ception that will be caught by this handler; it is equal (by pointer equality) to
NULL if this handler is for all types. HANDLER_PARMS is the DECL_STMT for the
catch parameter, and HANDLER_BODY is the code for the block itself.

Used to represent an if statement. The IF_COND is the expression.

If the condition is a TREE_LIST, then the TREE_PURPOSE is a statement (usually
a DECL_STMT). Each time the condition is evaluated, the statement should be
executed. Then, the TREE_VALUE should be used as the conditional expression
itself. This representation is used to handle C++ code like this:

C++ distinguishes between this and COND_EXPR for handling templates.



206 GNU Compiler Collection (GCC) Internals

if (int i =7) ...
where there is a new local variable (or variables) declared within the condition.

The THEN_CLAUSE represents the statement given by the then condition, while
the ELSE_CLAUSE represents the statement given by the else condition.

SUBOBJECT
In a constructor, these nodes are used to mark the point at which a subobject
of this is fully constructed. If, after this point, an exception is thrown before a
CTOR_STMT with CTOR_END_P set is encountered, the SUBOBJECT_CLEANUP must
be executed. The cleanups must be executed in the reverse order in which they
appear.

SWITCH_STMT
Used to represent a switch statement. The SWITCH_STMT_COND is the expres-
sion on which the switch is occurring. See the documentation for an IF_STMT
for more information on the representation used for the condition. The SWITCH_
STMT_BODY is the body of the switch statement. The SWITCH_STMT_TYPE is the
original type of switch expression as given in the source, before any compiler
conversions.

TRY_BLOCK
Used to represent a try block. The body of the try block is given by TRY_
STMTS. Each of the catch blocks is a HANDLER node. The first handler is given
by TRY_HANDLERS. Subsequent handlers are obtained by following the TREE_
CHAIN link from one handler to the next. The body of the handler is given by
HANDLER_BODY.

If CLEANUP_P holds of the TRY_BLOCK, then the TRY_HANDLERS will not be a
HANDLER node. Instead, it will be an expression that should be executed if
an exception is thrown in the try block. It must rethrow the exception after
executing that code. And, if an exception is thrown while the expression is
executing, terminate must be called.

USING_STMT
Used to represent a using directive. The namespace is given by USING_STMT_
NAMESPACE, which will be a NAMESPACE_DECL. This node is needed inside

template functions, to implement using directives during instantiation.

WHILE_STMT
Used to represent a while loop. The WHILE_COND is the termination condition
for the loop. See the documentation for an IF_STMT for more information on
the representation used for the condition.

The WHILE_BODY is the body of the loop.

11.10.6 C++ Expressions

This section describes expressions specific to the C and C++ front ends.

TYPEID_EXPR
Used to represent a typeid expression.



Chapter 11:

NEW_EXPR
VEC_NEW_EX

DELETE_EXP
VEC_DELETE

MEMBER_REF

THROW_EXPR

AGGR_INIT_

GENERIC 207

PR
Used to represent a call to new and new[] respectively.

R
_EXPR
Used to represent a call to delete and delete[] respectively.

Represents a reference to a member of a class.

Represents an instance of throw in the program. Operand 0, which is the
expression to throw, may be NULL_TREE.

EXPR

An AGGR_INIT_EXPR represents the initialization as the return value of a func-
tion call, or as the result of a constructor. An AGGR_INIT_EXPR will only appear
as a full-expression, or as the second operand of a TARGET_EXPR. AGGR_INIT_
EXPRs have a representation similar to that of CALL_EXPRs. You can use the
AGGR_INIT_EXPR_FN and AGGR_INIT_EXPR_ARG macros to access the function
to call and the arguments to pass.

If AGGR_INIT_VIA_CTOR_P holds of the AGGR_INIT_EXPR, then the initialization
is via a constructor call. The address of the AGGR_INIT_EXPR_SLOT operand,
which is always a VAR_DECL, is taken, and this value replaces the first argument
in the argument list.

In either case, the expression is void.






Chapter 12: GIMPLE 209

12 GIMPLE

GIMPLE is a three-address representation derived from GENERIC by breaking down
GENERIC expressions into tuples of no more than 3 operands (with some exceptions like
function calls). GIMPLE was heavily influenced by the SIMPLE IL used by the McCAT
compiler project at McGill University, though we have made some different choices. For
one thing, SIMPLE doesn’t support goto.

Temporaries are introduced to hold intermediate values needed to compute complex ex-
pressions. Additionally, all the control structures used in GENERIC are lowered into con-
ditional jumps, lexical scopes are removed and exception regions are converted into an on
the side exception region tree.

The compiler pass which converts GENERIC into GIMPLE is referred to as the
‘gimplifier’. The gimplifier works recursively, generating GIMPLE tuples out of the
original GENERIC expressions.

One of the early implementation strategies used for the GIMPLE representation was to
use the same internal data structures used by front ends to represent parse trees. This
simplified implementation because we could leverage existing functionality and interfaces.
However, GIMPLE is a much more restrictive representation than abstract syntax trees
(AST), therefore it does not require the full structural complexity provided by the main
tree data structure.

The GENERIC representation of a function is stored in the DECL_SAVED_TREE field of the
associated FUNCTION_DECL tree node. It is converted to GIMPLE by a call to gimplify_
function_tree.

If a front end wants to include language-specific tree codes in the tree representation
which it provides to the back end, it must provide a definition of LANG_HOOKS_GIMPLIFY_
EXPR which knows how to convert the front end trees to GIMPLE. Usually such a hook will
involve much of the same code for expanding front end trees to RTL. This function can
return fully lowered GIMPLE, or it can return GENERIC trees and let the main gimplifier
lower them the rest of the way; this is often simpler. GIMPLE that is not fully lowered is
known as “High GIMPLE” and consists of the IL before the pass pass_lower_cf. High
GIMPLE contains some container statements like lexical scopes (represented by GIMPLE_
BIND) and nested expressions (e.g., GIMPLE_TRY), while “Low GIMPLE” exposes all of the
implicit jumps for control and exception expressions directly in the IL and EH region trees.

The C and C++ front ends currently convert directly from front end trees to GIMPLE, and
hand that off to the back end rather than first converting to GENERIC. Their gimplifier
hooks know about all the _STMT nodes and how to convert them to GENERIC forms. There
was some work done on a genericization pass which would run first, but the existence of
STMT_EXPR meant that in order to convert all of the C statements into GENERIC equivalents
would involve walking the entire tree anyway, so it was simpler to lower all the way. This
might change in the future if someone writes an optimization pass which would work better
with higher-level trees, but currently the optimizers all expect GIMPLE.

You can request to dump a C-like representation of the GIMPLE form with the flag
‘~fdump-tree-gimple’.



210 GNU Compiler Collection (GCC) Internals

12.1 Tuple representation

GIMPLE instructions are tuples of variable size divided in two groups: a header describing
the instruction and its locations, and a variable length body with all the operands. Tuples
are organized into a hierarchy with 3 main classes of tuples.

12.1.1 gimple (gsbase)

This is the root of the hierarchy, it holds basic information needed by most GIMPLE
statements. There are some fields that may not be relevant to every GIMPLE statement,
but those were moved into the base structure to take advantage of holes left by other fields
(thus making the structure more compact). The structure takes 4 words (32 bytes) on 64
bit hosts:

Field Size (bits)
code 8
subcode 16
no_warning 1
visited 1
nontemporal_move 1

plf 2
modified 1
has_volatile_ops 1
references_memory_p 1

uid 32
location 32
num_ops 32

bb 64
block 63
Total size 32 bytes

e code Main identifier for a GIMPLE instruction.

e subcode Used to distinguish different variants of the same basic instruction or provide
flags applicable to a given code. The subcode flags field has different uses depending on
the code of the instruction, but mostly it distinguishes instructions of the same family.
The most prominent use of this field is in assignments, where subcode indicates the
operation done on the RHS of the assignment. For example, a = b + c is encoded as
GIMPLE_ASSIGN <PLUS_EXPR, a, b, c>.

e no_warning Bitflag to indicate whether a warning has already been issued on this
statement.

e visited General purpose “visited” marker. Set and cleared by each pass when needed.

e nontemporal_move Bitflag used in assignments that represent non-temporal moves.
Although this bitflag is only used in assignments, it was moved into the base to take
advantage of the bit holes left by the previous fields.

e plf Pass Local Flags. This 2-bit mask can be used as general purpose markers by any
pass. Passes are responsible for clearing and setting these two flags accordingly.

e modified Bitflag to indicate whether the statement has been modified. Used mainly
by the operand scanner to determine when to re-scan a statement for operands.



Chapter 12: GIMPLE 211

e has_volatile_ops Bitflag to indicate whether this statement contains operands that
have been marked volatile.

e references_memory_p Bitflag to indicate whether this statement contains memory ref-
erences (i.e., its operands are either global variables, or pointer dereferences or anything
that must reside in memory).

e uid This is an unsigned integer used by passes that want to assign IDs to every state-
ment. These IDs must be assigned and used by each pass.

e location This is a location_t identifier to specify source code location for this state-
ment. It is inherited from the front end.

e num_ops Number of operands that this statement has. This specifies the size of the
operand vector embedded in the tuple. Only used in some tuples, but it is declared in
the base tuple to take advantage of the 32-bit hole left by the previous fields.

e bb Basic block holding the instruction.

e block Lexical block holding this statement. Also used for debug information genera-
tion.

12.1.2 gimple_statement_with_ops

This tuple is actually split in two: gimple_statement_with_ops_base and gimple_
statement_with_ops. This is needed to accommodate the way the operand vector is
allocated. The operand vector is defined to be an array of 1 element. So, to allocate a
dynamic number of operands, the memory allocator (gimple_alloc) simply allocates
enough memory to hold the structure itself plus N - 1 operands which run “off the end” of
the structure. For example, to allocate space for a tuple with 3 operands, gimple_alloc
reserves sizeof (struct gimple_statement_with_ops) + 2 * sizeof (tree) bytes.

On the other hand, several fields in this tuple need to be shared with the
gimple_statement_with_memory_ops tuple. So, these common fields are placed in
gimple_statement_with_ops_base which is then inherited from the other two tuples.

gsbase 256

def_ops 64

use_ops 64

op num_ops * 64

Total 48 + 8 * num_ops bytes
size

e gsbase Inherited from struct gimple.

e def_ops Array of pointers into the operand array indicating all the slots that contain
a variable written-to by the statement. This array is also used for immediate use
chaining. Note that it would be possible to not rely on this array, but the changes
required to implement this are pretty invasive.

e use_ops Similar to def_ops but for variables read by the statement.

e op Array of trees with num_ops slots.

12.1.3 gimple_statement_with_memory_ops

This tuple is essentially identical to gimple_statement_with_ops, except that it contains
4 additional fields to hold vectors related memory stores and loads. Similar to the pre-



212

GNU Compiler Collection (GCC) Internals

vious case, the structure is split in two to accommodate for the operand vector (gimple_
statement_with_memory_ops_base and gimple_statement_with_memory_ops).

Field Size (bits)

gsbase 256

def_ops 64

use_ops 64

vdef_ops 64

vuse_ops 64

stores 64
loads 64
op num_ops * 64

Total size 80 + 8 * num_ops bytes

vdef_ops Similar to def_ops but for VDEF operators. There is one entry per memory
symbol written by this statement. This is used to maintain the memory SSA use-def
and def-def chains.

vuse_ops Similar to use_ops but for VUSE operators. There is one entry per memory
symbol loaded by this statement. This is used to maintain the memory SSA use-def
chains.

stores Bitset with all the UIDs for the symbols written-to by the statement. This is
different than vdef_ops in that all the affected symbols are mentioned in this set. If
memory partitioning is enabled, the vdef_ops vector will refer to memory partitions.
Furthermore, no SSA information is stored in this set.

loads Similar to stores, but for memory loads. (Note that there is some amount

of redundancy here, it should be possible to reduce memory utilization further by
removing these sets).

All the other tuples are defined in terms of these three basic ones. Each tuple will add
some fields.

12.2 Class hierarchy of GIMPLE statements

The following diagram shows the C++ inheritance hierarchy of statement kinds, along with
their relationships to GSS_ values (layouts) and GIMPLE_ values (codes):

gimple
| layout: GSS_BASE
used for 4 codes: GIMPLE_ERROR_MARK
GIMPLE_NOP
GIMPLE_OMP_SECTIONS_SWITCH
GIMPLE_PREDICT

|

|

|

I

|

+ gimple_statement_with_ops_base
| I (no GSS layout)

[

| + gimple_statement_with_ops
| | | layout: GSS_WITH_OPS
o

| |  + gcond

o code: GIMPLE_COND
[

| I + gdebug



Chapter 12: GIMPLE 213

code: GIMPLE_DEBUG
code: GIMPLE_GOTO
code: GIMPLE_LABEL

code: GIMPLE_SWITCH

gimple_statement_with_memory_ops_base
| layout: GSS_WITH_MEM_OPS_BASE
|
+ gimple_statement_with_memory_ops
(. layout: GSS_WITH_MEM_OPS
| |
| + gassign
| I code GIMPLE_ASSIGN
| |
|  + greturn

| code GIMPLE_RETURN

|

+

|

|

gecall
layout: GSS_CALL, code: GIMPLE_CALL

+ gasm
| layout: GSS_ASM, code: GIMPLE_ASM
|
+ gtransaction
layout: GSS_TRANSACTION, code: GIMPLE_TRANSACTION

gimple_statement_omp
| layout: GSS_OMP. Used for code GIMPLE_OMP_SECTION
I
+ gomp_critical
layout: GSS_OMP_CRITICAL, code: GIMPLE_OMP_CRITICAL

gomp_for
layout: GSS_OMP_FOR, code: GIMPLE_OMP_FOR

gomp_parallel_layout
| layout: GSS_OMP_PARALLEL_LAYOUT
|
+ gimple_statement_omp_taskreg
[
| + gomp_parallel
[ code: GIMPLE_OMP_PARALLEL
.
| + gomp_task
[ code: GIMPLE_OMP_TASK
I
+

gimple_statement_omp_target
code: GIMPLE_OMP_TARGET

gomp_sections
layout: GSS_OMP_SECTIONS, code: GIMPLE_OMP_SECTIONS

—_—— e —_ - - - - - - - - — - ——— —_————_—— —— ———_—————

I
[
+
[
|
+
I
I
I
|
I
|
I
I
|
I
|
I
[
+
[
|



214 GNU Compiler Collection (GCC) Internals

+ gimple_statement_omp_single_layout
| layout: GSS_OMP_SINGLE_LAYOUT
I
+ gomp_single
| code: GIMPLE_OMP_SINGLE
I
+ gomp_teams
code: GIMPLE_OMP_TEAMS

gbind
layout: GSS_BIND, code: GIMPLE_BIND

gcatch
layout: GSS_CATCH, code: GIMPLE_CATCH

geh_filter
layout: GSS_EH_FILTER, code: GIMPLE_EH_FILTER

geh_else
layout: GSS_EH_ELSE, code: GIMPLE_EH_ELSE

geh_mnt
layout: GSS_EH_MNT, code: GIMPLE_EH_MUST_NOT_THROW

layout: GSS_PHI, code: GIMPLE_PHI

gimple_statement_eh_ctrl

I layout: GSS_EH_CTRL

I

+ gresx

| code: GIMPLE_RESX

I

+ geh_dispatch

code: GIMPLE_EH_DISPATCH

gtry
layout: GSS_TRY, code: GIMPLE_TRY

gimple_statement_wce
layout: GSS_WCE, code: GIMPLE_WITH_CLEANUP_EXPR

gomp_continue
layout: GSS_OMP_CONTINUE, code: GIMPLE_OMP_CONTINUE

I
I
I
I
I
|
I
I
I
+
|
I
+
I
I
+
[
|
+
I
I
+
|
[
+ gphi
I
[
+
I
I
I
I
I
I
|
I
+
I
I
+
I
I
+
I
I
+ gomp_atomic_load
| layout: GSS_OMP_ATOMIC_LOAD, code: GIMPLE_OMP_ATOMIC_LOAD
I
+ gimple_statement_omp_atomic_store_layout

| layout: GSS_OMP_ATOMIC_STORE_LAYOUT,

I code: GIMPLE_OMP_ATOMIC_STORE

I

+ gomp_atomic_store

| code: GIMPLE_OMP_ATOMIC_STORE

I

+ gomp_return

code: GIMPLE_OMP_RETURN



Chapter 12: GIMPLE 215

12.3 GIMPLE instruction set

The following table briefly describes the GIMPLE instruction set.

Instruction High GIMPLE Low GIMPLE
GIMPLE_ASM

GIMPLE_ASSIGN

GIMPLE_BIND

GIMPLE_CALL

GIMPLE_CATCH

GIMPLE_COND

GIMPLE_DEBUG
GIMPLE_EH_FILTER
GIMPLE_GOTO

GIMPLE_LABEL

GIMPLE_NOP
GIMPLE_OMP_ATOMIC_LOAD
GIMPLE_OMP_ATOMIC_STORE
GIMPLE_OMP_CONTINUE
GIMPLE_OMP_CRITICAL
GIMPLE_OMP_FOR
GIMPLE_OMP_MASTER
GIMPLE_OMP_ORDERED
GIMPLE_OMP_PARALLEL
GIMPLE_OMP_RETURN
GIMPLE_OMP_SECTION
GIMPLE_OMP_SECTIONS
GIMPLE_OMP_SECTIONS_SWITCH
GIMPLE_OMP_SINGLE
GIMPLE_PHI

GIMPLE_RESX

GIMPLE_RETURN X
GIMPLE_SWITCH
GIMPLE_TRY X

X
X

T T B B R R T o T T T T T B I I - S T T T o T
™

oI o T T T B T T B R A T T o T T

"

12.4 Exception Handling

Other exception handling constructs are represented using GIMPLE_TRY_CATCH. GIMPLE_
TRY_CATCH has two operands. The first operand is a sequence of statements to execute. If
executing these statements does not throw an exception, then the second operand is ignored.
Otherwise, if an exception is thrown, then the second operand of the GIMPLE_TRY_CATCH is
checked. The second operand may have the following forms:

1. A sequence of statements to execute. When an exception occurs, these statements are
executed, and then the exception is rethrown.

2. A sequence of GIMPLE_CATCH statements. Each GIMPLE_CATCH has a list of applicable
exception types and handler code. If the thrown exception matches one of the caught
types, the associated handler code is executed. If the handler code falls off the bottom,
execution continues after the original GIMPLE_TRY_CATCH.



216 GNU Compiler Collection (GCC) Internals

3. A GIMPLE_EH_FILTER statement. This has a list of permitted exception types, and
code to handle a match failure. If the thrown exception does not match one of the
allowed types, the associated match failure code is executed. If the thrown exception
does match, it continues unwinding the stack looking for the next handler.

Currently throwing an exception is not directly represented in GIMPLE, since it is im-
plemented by calling a function. At some point in the future we will want to add some way
to express that the call will throw an exception of a known type.

Just before running the optimizers, the compiler lowers the high-level EH constructs
above into a set of ‘goto’s, magic labels, and EH regions. Continuing to unwind at the end
of a cleanup is represented with a GIMPLE_RESX.

12.5 Temporaries

When gimplification encounters a subexpression that is too complex, it creates a new tem-
porary variable to hold the value of the subexpression, and adds a new statement to initial-
ize it before the current statement. These special temporaries are known as ‘expression
temporaries’, and are allocated using get_formal_tmp_var. The compiler tries to always
evaluate identical expressions into the same temporary, to simplify elimination of redundant
calculations.

We can only use expression temporaries when we know that it will not be reevaluated
before its value is used, and that it will not be otherwise modified*. Other temporaries can
be allocated using get_initialized_tmp_var or create_tmp_var.

Currently, an expression like a = b + 5 is not reduced any further. We tried converting it
to something like
Tl =b + 5;
a = T1;
but this bloated the representation for minimal benefit. However, a variable which must
live in memory cannot appear in an expression; its value is explicitly loaded into a temporary
first. Similarly, storing the value of an expression to a memory variable goes through a
temporary.

12.6 Operands

In general, expressions in GIMPLE consist of an operation and the appropriate number of
simple operands; these operands must either be a GIMPLE rvalue (is_gimple_val), i.e. a
constant or a register variable. More complex operands are factored out into temporaries,
so that

a=b+c+d

becomes
Tl =b + c;
a="T1+ d;
The same rule holds for arguments to a GIMPLE_CALL.

The target of an assignment is usually a variable, but can also be a MEM_REF or a compound
lvalue as described below.

! These restrictions are derived from those in Morgan 4.8.



Chapter 12: GIMPLE 217

12.6.1 Compound Expressions

The left-hand side of a C comma expression is simply moved into a separate statement.

12.6.2 Compound Lvalues

Currently compound lvalues involving array and structure field references are not broken
down; an expression like a.b[2] = 42 is not reduced any further (though complex array
subscripts are). This restriction is a workaround for limitations in later optimizers; if we
were to convert this to

Tl = &a.b;

T1[2] = 42;

alias analysis would not remember that the reference to T1[2] came by way of a.b, so

it would think that the assignment could alias another member of a; this broke struct-
alias-1.c. Future optimizer improvements may make this limitation unnecessary.

12.6.3 Conditional Expressions

A C ?7: expression is converted into an if statement with each branch assigning to the same
temporary. So,
a=b7?c: d;
becomes
if (b == 1)
Tl = c;
else
T1 = d;
a =T1;
The GIMPLE level if-conversion pass re-introduces 7: expression, if appropriate. It is
used to vectorize loops with conditions using vector conditional operations.

Note that in GIMPLE, if statements are represented using GIMPLE_COND, as described
below.

12.6.4 Logical Operators

Except when they appear in the condition operand of a GIMPLE_COND, logical ‘and’ and ‘or’
operators are simplified as follows: a = b && ¢ becomes
T1 = (bool)b;
if (T1 == true)
T1 = (bool)c;
a =T1;
Note that T1 in this example cannot be an expression temporary, because it has two
different assignments.

12.6.5 Manipulating operands

All gimple operands are of type tree. But only certain types of trees are allowed to be
used as operand tuples. Basic validation is controlled by the function get_gimple_rhs_
class, which given a tree code, returns an enum with the following values of type enum
gimple_rhs_class

e GIMPLE_INVALID_RHS The tree cannot be used as a GIMPLE operand.

e GIMPLE_TERNARY_RHS The tree is a valid GIMPLE ternary operation.



218 GNU Compiler Collection (GCC) Internals

e GIMPLE_BINARY_RHS The tree is a valid GIMPLE binary operation.
e GIMPLE_UNARY_RHS The tree is a valid GIMPLE unary operation.

e GIMPLE_SINGLE_RHS The tree is a single object, that cannot be split into simpler
operands (for instance, SSA_NAME, VAR_DECL, COMPONENT_REF, etc).

This operand class also acts as an escape hatch for tree nodes that may be flattened
out into the operand vector, but would need more than two slots on the RHS. For
instance, a COND_EXPR expression of the form (a op b) 7 x : y could be flattened out
on the operand vector using 4 slots, but it would also require additional processing to
distinguish ¢ = a op b from c = a op b ? x : y. Something similar occurs with ASSERT_
EXPR. In time, these special case tree expressions should be flattened into the operand
vector.

For tree nodes in the categories GIMPLE_TERNARY_RHS, GIMPLE_BINARY_RHS and GIMPLE_
UNARY_RHS, they cannot be stored inside tuples directly. They first need to be flattened and
separated into individual components. For instance, given the GENERIC expression

a=b+c

its tree representation is:

MODIFY_EXPR <VAR_DECL <a>, PLUS_EXPR <VAR_DECL <b>, VAR_DECL <c>>>

In this case, the GIMPLE form for this statement is logically identical to its GENERIC
form but in GIMPLE, the PLUS_EXPR on the RHS of the assignment is not represented as a
tree, instead the two operands are taken out of the PLUS_EXPR sub-tree and flattened into
the GIMPLE tuple as follows:

GIMPLE_ASSIGN <PLUS_EXPR, VAR_DECL <a>, VAR_DECL <b>, VAR_DECL <c>>

12.6.6 Operand vector allocation

The operand vector is stored at the bottom of the three tuple structures that accept
operands. This means, that depending on the code of a given statement, its operand vector
will be at different offsets from the base of the structure. To access tuple operands use the
following accessors

unsigned gimple_num_ops (gimple g) [GIMPLE function]
Returns the number of operands in statement G.

tree gimple_op (gimple g, unsigned i) [GIMPLE function]
Returns operand I from statement G.

tree * gimple_ops (gimple g) [GIMPLE function]
Returns a pointer into the operand vector for statement G. This is computed using
an internal table called gimple_ops_offset_[|]. This table is indexed by the gimple
code of G.

When the compiler is built, this table is filled-in using the sizes of the structures used
by each statement code defined in gimple.def. Since the operand vector is at the
bottom of the structure, for a gimple code C the offset is computed as sizeof (struct-of
C) - sizeof (tree).

This mechanism adds one memory indirection to every access when using gimple_
op(), if this becomes a bottleneck, a pass can choose to memoize the result from
gimple_ops() and use that to access the operands.



Chapter 12: GIMPLE 219

12.6.7 Operand validation

When adding a new operand to a gimple statement, the operand will be validated according
to what each tuple accepts in its operand vector. These predicates are called by the gimple_

name_set_. .. (). Each tuple will use one of the following predicates (Note, this list is not
exhaustive):
bool is_gimple_val (tree t) [GIMPLE function]

Returns true if t is a "GIMPLE value", which are all the non-addressable stack
variables (variables for which is_gimple_reg returns true) and constants (expressions
for which is_gimple_min_invariant returns true).

bool is_gimple_addressable (tree t) [GIMPLE function]
Returns true if t is a symbol or memory reference whose address can be taken.

bool is_gimple_asm_val (tree t) [GIMPLE function]
Similar to is_gimple_val but it also accepts hard registers.

bool is_gimple_call_addr (tree t) [GIMPLE function]
Return true if t is a valid expression to use as the function called by a GIMPLE_CALL.

bool is_gimple_mem_ref_addr (tree t) [GIMPLE function]
Return true if t is a valid expression to use as first operand of a MEM_REF expression.

bool is_gimple_constant (tree t) [GIMPLE function]
Return true if t is a valid gimple constant.

bool is_gimple_min_invariant (tree t) [GIMPLE function]
Return true if t is a valid minimal invariant. This is different from constants, in that
the specific value of t may not be known at compile time, but it is known that it
doesn’t change (e.g., the address of a function local variable).

bool is_gimple_ip_invariant (tree t) [GIMPLE function]
Return true if t is an interprocedural invariant. This means that t is a valid invariant
in all functions (e.g. it can be an address of a global variable but not of a local one).

bool is_gimple_ip_invariant_address (tree t) [GIMPLE function]
Return true if t is an ADDR_EXPR that does not change once the program is running
(and which is valid in all functions).

12.6.8 Statement validation

bool is_gimple_assign (gimple g) [GIMPLE function]
Return true if the code of g is GIMPLE_ASSIGN.

bool is_gimple_call (gimple g) [GIMPLE function]
Return true if the code of g is GIMPLE_CALL.

bool is_gimple_debug (gimple g) [GIMPLE function]
Return true if the code of g is GIMPLE_DEBUG.

bool gimple_assign_cast_p (const_gimple g) [GIMPLE function]
Return true if g is a GIMPLE_ASSIGN that performs a type cast operation.



220 GNU Compiler Collection (GCC) Internals

bool gimple_debug_bind_p (gimple g) [GIMPLE function]
Return true if g is a GIMPLE_DEBUG that binds the value of an expression to a variable.

bool is_gimple_omp (gimple g) [GIMPLE function]
Return true if g is any of the OpenMP codes.

gimple_debug_begin_stmt_p (gimple g) [GIMPLE function]
Return true if g is a GIMPLE_DEBUG that marks the beginning of a source statement.

gimple_debug_inline_entry_p (gimple g) [GIMPLE function]
Return true if g is a GIMPLE_DEBUG that marks the entry point of an inlined function.

gimple_debug_nonbind_marker_p (gimple g) [GIMPLE function]
Return true if g is a GIMPLE_DEBUG that marks a program location, without any
variable binding.

12.7 Manipulating GIMPLE statements

This section documents all the functions available to handle each of the GIMPLE instruc-
tions.

12.7.1 Common accessors

The following are common accessors for gimple statements.

enum gimple_code gimple_code (gimple g) [GIMPLE function]
Return the code for statement G.

basic_block gimple_bb (gimple g) [GIMPLE function]
Return the basic block to which statement G belongs to.

tree gimple_block (gimple g) [GIMPLE function]
Return the lexical scope block holding statement G.

tree gimple_expr_type (gimple stmt) [GIMPLE function]
Return the type of the main expression computed by STMT. Return void_type_node
if STMT computes nothing. This will only return something meaningful for GIMPLE_
ASSIGN, GIMPLE_COND and GIMPLE_CALL. For all other tuple codes, it will return
void_type_node.

enum tree_code gimple_expr_code (gimple stmt) [GIMPLE function]
Return the tree code for the expression computed by STMT. This is only meaningful
for GIMPLE_CALL, GIMPLE_ASSIGN and GIMPLE_COND. If STMT is GIMPLE_CALL, it will
return CALL_EXPR. For GIMPLE_COND, it returns the code of the comparison predicate.
For GIMPLE_ASSIGN it returns the code of the operation performed by the RHS of the
assignment.

void gimple_set_block (gimple g, tree block) [GIMPLE function]
Set the lexical scope block of G to BLOCK.

location_t gimple_locus (gimple g) [GIMPLE function]
Return locus information for statement G.



Chapter 12: GIMPLE

void gimple_set_locus (gimple g, location_t locus)
Set locus information for statement G.

bool gimple_locus_empty_p (gimple g)
Return true if G does not have locus information.

bool gimple_no_warning_p (gimple stmt)

221

[GIMPLE function]

[GIMPLE function]

[GIMPLE function]

Return true if no warnings should be emitted for statement STMT.

void gimple_set_visited (gimple stmt, bool visited_p)
Set the visited status on statement STMT to VISITED_P.

bool gimple_visited_p (gimple stmt)
Return the visited status on statement STMT.

void gimple_set_plf (gimple stmt, enum plf-mask plf, bool
val_p)
Set pass local flag PLF on statement STMT to VAL_P.

unsigned int gimple_plf (gimple stmt, enum plf-mask plf)
Return the value of pass local flag PLF on statement STMT.

bool gimple_has_ops (gimple g)

Return true if statement G has register or memory operands.

bool gimple_has_mem_ops (gimple g)
Return true if statement G has memory operands.

unsigned gimple_num_ops (gimple g)
Return the number of operands for statement G.

tree * gimple_ops (gimple g)
Return the array of operands for statement G.

tree gimple_op (gimple g, unsigned i)
Return operand I for statement G.

tree * gimple_op_ptr (gimple g, unsigned i)
Return a pointer to operand I for statement G.

void gimple_set_op (gimple g, unsigned i, tree op)
Set operand I of statement G to OP.

bitmap gimple_addresses_taken (gimple stmt)

[GIMPLE function]

[GIMPLE function]

[GIMPLE function]

[GIMPLE function]

[GIMPLE function]

[GIMPLE function]

[GIMPLE function]

[GIMPLE function]

[GIMPLE function]

[GIMPLE function]

[GIMPLE function]

[GIMPLE function]

Return the set of symbols that have had their address taken by STMT.

struct def_optype_d * gimple_def_ops (gimple g)
Return the set of DEF operands for statement G.

void gimple_set_def_ops (gimple g, struct def-optype_d
*def)
Set DEF to be the set of DEF operands for statement G.

[GIMPLE function]

[GIMPLE function]



222 GNU Compiler Collection (GCC) Internals

struct use_optype_d * gimple_use_ops (gimple g) [GIMPLE function]
Return the set of USE operands for statement G.

void gimple_set_use_ops (gimple g, struct use_optype_d [GIMPLE function]
*use)
Set USE to be the set of USE operands for statement G.

struct voptype_d * gimple_vuse_ops (gimple g) [GIMPLE function]
Return the set of VUSE operands for statement G.

void gimple_set_vuse_ops (gimple g, struct voptype-d *ops) [GIMPLE function]
Set OPS to be the set of VUSE operands for statement G.

struct voptype_d * gimple_vdef_ops (gimple g) [GIMPLE function]
Return the set of VDEF operands for statement G.

void gimple_set_vdef_ops (gimple g, struct voptype_d *ops) [GIMPLE function]
Set OPS to be the set of VDEF operands for statement G.

bitmap gimple_loaded_syms (gimple g) [GIMPLE function]
Return the set of symbols loaded by statement G. Each element of the set is the
DECL_UID of the corresponding symbol.

bitmap gimple_stored_syms (gimple g) [GIMPLE function]
Return the set of symbols stored by statement G. Each element of the set is the
DECL_UID of the corresponding symbol.

bool gimple_modified_p (gimple g) [GIMPLE function]
Return true if statement G has operands and the modified field has been set.

bool gimple_has_volatile_ops (gimple stmt) [GIMPLE function]
Return true if statement STMT contains volatile operands.

void gimple_set_has_volatile_ops (gimple stmt, bool [GIMPLE function]
volatilep)
Return true if statement STMT contains volatile operands.

void update_stmt (gimple s) [GIMPLE function]
Mark statement S as modified, and update it.

void update_stmt_if_modified (gimple s) [GIMPLE function]
Update statement S if it has been marked modified.

gimple gimple_copy (gimple stmt) [GIMPLE function]
Return a deep copy of statement STMT.



Chapter 12: GIMPLE 223

12.8 Tuple specific accessors

12.8.1 GIMPLE_ASM

gasm *gimple_build_asm_vec ( const char *string, vec<tree, [GIMPLE function]
va_gc> *inputs, vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
vec<tree, va_gc> *labels)
Build a GIMPLE_ASM statement. This statement is used for building in-line assembly
constructs. STRING is the assembly code. INPUTS, OUTPUTS, CLOBBERS and LABELS
are the inputs, outputs, clobbered registers and labels.

unsigned gimple_asm_ninputs (const gasm *g) [GIMPLE function]
Return the number of input operands for GIMPLE_ASM G.

unsigned gimple_asm_noutputs (const gasm *g) [GIMPLE function]
Return the number of output operands for GIMPLE_ASM G.

unsigned gimple_asm_nclobbers (const gasm *g) [GIMPLE function]
Return the number of clobber operands for GIMPLE_ASM G.

tree gimple_asm_input_op (const gasm *g, unsigned index) [GIMPLE function]
Return input operand INDEX of GIMPLE_ASM G.

void gimple_asm_set_input_op (gasm *g, unsigned index, [GIMPLE function]

tree in_op)

Set IN_OP to be input operand INDEX in GIMPLE_ASM G.

tree gimple_asm_output_op (const gasm *g, unsigned index) [GIMPLE function]
Return output operand INDEX of GIMPLE_ASM G.

void gimple_asm_set_output_op (gasm *g, unsigned index, [GIMPLE function]
tree out_op)
Set OUT_OP to be output operand INDEX in GIMPLE_ASM G.

tree gimple_asm_clobber_op (const gasm *g, unsigned index)  [GIMPLE function]
Return clobber operand INDEX of GIMPLE_ASM G.

void gimple_asm_set_clobber_op (gasm *g, unsigned index, [GIMPLE function]
tree clobber_op)
Set CLOBBER_OP to be clobber operand INDEX in GIMPLE_ASM G.

const char * gimple_asm_string (const gasm *g) [GIMPLE function]
Return the string representing the assembly instruction in GIMPLE_ASM G.

bool gimple_asm_volatile_p (const gasm *g) [GIMPLE function]
Return true if G is an asm statement marked volatile.

void gimple_asm_set_volatile (gasm *g, bool volatile_p) [GIMPLE function]
Mark asm statement G as volatile or non-volatile based on VOLATILE_P.



224 GNU Compiler Collection (GCC) Internals

12.8.2 GIMPLE_ASSIGN

gassign *gimple_build_assign (tree lhs, tree rhs) [GIMPLE function]
Build a GIMPLE_ASSIGN statement. The left-hand side is an lvalue passed in lhs. The
right-hand side can be either a unary or binary tree expression. The expression tree
rhs will be flattened and its operands assigned to the corresponding operand slots in
the new statement. This function is useful when you already have a tree expression
that you want to convert into a tuple. However, try to avoid building expression
trees for the sole purpose of calling this function. If you already have the operands
in separate trees, it is better to use gimple_build_assign with enum tree_code
argument and separate arguments for each operand.

gassign *gimple_build_assign (tree lhs, enum tree_code [GIMPLE function]
subcode, tree opl, tree op2, tree op3)
This function is similar to two operand gimple_build_assign, but is used to build a
GIMPLE_ASSIGN statement when the operands of the right-hand side of the assignment
are already split into different operands.

The left-hand side is an lvalue passed in lhs. Subcode is the tree_code for the
right-hand side of the assignment. Opl, op2 and op3 are the operands.

gassign *gimple_build_assign (tree lhs, enum tree_code [GIMPLE function]
subcode, tree opl, tree op2)
Like the above 5 operand gimple_build_assign, but with the last argument NULL -
this overload should not be used for GIMPLE_TERNARY_RHS assignments.

gassign *gimple_build_assign (tree lhs, enum tree_code [GIMPLE function]
subcode, tree opl)
Like the above 4 operand gimple_build_assign, but with the last argument NULL
- this overload should be used only for GIMPLE_UNARY_RHS and GIMPLE_SINGLE_RHS
assignments.

gimple gimplify_assign (tree dst, tree src, gimple_seq [GIMPLE function]

*seq-p)
Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.

DST/SRC are the destination and source respectively. You can pass ungimplified trees in
DST or SRC, in which case they will be converted to a gimple operand if necessary.

This function returns the newly created GIMPLE_ASSIGN tuple.

enum tree_code gimple_assign_rhs_code (gimple g) [GIMPLE function]
Return the code of the expression computed on the RHS of assignment statement G.
enum gimple_rhs_class gimple_assign_rhs_class [GIMPLE function]
(gimple g)

Return the gimple rhs class of the code for the expression computed on the rhs of
assignment statement G. This will never return GIMPLE_INVALID_RHS.

tree gimple_assign_lhs (gimple g) [GIMPLE function]
Return the LHS of assignment statement G.



Chapter 12: GIMPLE 225

tree * gimple_assign_lhs_ptr (gimple g) [GIMPLE function]
Return a pointer to the LHS of assignment statement G.

tree gimple_assign_rhsl (gimple g) [GIMPLE function]
Return the first operand on the RHS of assignment statement G.

tree * gimple_assign_rhsl_ptr (gimple g) [GIMPLE function]
Return the address of the first operand on the RHS of assignment statement G.

tree gimple_assign_rhs2 (gimple g) [GIMPLE function]
Return the second operand on the RHS of assignment statement G.

tree * gimple_assign_rhs2_ptr (gimple g) [GIMPLE function]
Return the address of the second operand on the RHS of assignment statement G.

tree gimple_assign_rhs3 (gimple g) [GIMPLE function]
Return the third operand on the RHS of assignment statement G.

tree * gimple_assign_rhs3_ptr (gimple g) [GIMPLE function]
Return the address of the third operand on the RHS of assignment statement G.

void gimple_assign_set_lhs (gimple g, tree lhs) [GIMPLE function]
Set LHS to be the LHS operand of assignment statement G.

void gimple_assign_set_rhsl (gimple g, tree rhs) [GIMPLE function]
Set RHS to be the first operand on the RHS of assignment statement G.

void gimple_assign_set_rhs2 (gimple g, tree rhs) [GIMPLE function]
Set RHS to be the second operand on the RHS of assignment statement G.

void gimple_assign_set_rhs3 (gimple g, tree rhs) [GIMPLE function]
Set RHS to be the third operand on the RHS of assignment statement G.

bool gimple_assign_cast_p (const_gimple s) [GIMPLE function]
Return true if S is a type-cast assignment.

12.8.3 GIMPLE_BIND

gbind *gimple_build_bind (tree vars, gimple_seq body) [GIMPLE function]
Build a GIMPLE_BIND statement with a list of variables in VARS and a body of state-
ments in sequence BODY.

tree gimple_bind_vars (const ghind *g) [GIMPLE function]
Return the variables declared in the GIMPLE_BIND statement G.

void gimple_bind_set_vars (gbind *g, tree vars) [GIMPLE function]
Set VARS to be the set of variables declared in the GIMPLE_BIND statement G.

void gimple_bind_append_vars (gbind *g, tree vars) [GIMPLE function]
Append VARS to the set of variables declared in the GIMPLE_BIND statement G.

gimple_seq gimple_bind_body (ghind *g) [GIMPLE function]
Return the GIMPLE sequence contained in the GIMPLE_BIND statement G.



226 GNU Compiler Collection (GCC) Internals

void gimple_bind_set_body (gbind *g, gimple_seq seq) [GIMPLE function]
Set SEQ to be sequence contained in the GIMPLE_BIND statement G.

void gimple_bind_add_stmt (gbind *gs, gimple stmt) [GIMPLE function]
Append a statement to the end of a GIMPLE_BIND’s body.

void gimple_bind_add_seq (gbind *gs, gimple_seq seq) [GIMPLE function]
Append a sequence of statements to the end of a GIMPLE_BIND’s body.

tree gimple_bind_block (const ghind *g) [GIMPLE function]
Return the TREE_BLOCK node associated with GIMPLE_BIND statement G. This is
analogous to the BIND_EXPR_BLOCK field in trees.

void gimple_bind_set_block (gbind *g, tree block) [GIMPLE function]
Set BLOCK to be the TREE_BLOCK node associated with GIMPLE_BIND statement G.

12.8.4 GIMPLE_CALL

gcall *gimple_build_call (tree fn, unsigned nargs, ...) [GIMPLE function]
Build a GIMPLE_CALL statement to function FN. The argument FN must be either
a FUNCTION_DECL or a gimple call address as determined by is_gimple_call_addr.
NARGS are the number of arguments. The rest of the arguments follow the argument
NARGS, and must be trees that are valid as rvalues in gimple (i.e., each operand is
validated with is_gimple_operand).

gcall *gimple_build_call_from_tree (tree call_expr, tree [GIMPLE function]
faptrtype)

Build a GIMPLE_CALL from a CALL_EXPR node. The arguments and the function are
taken from the expression directly. The type of the GIMPLE_CALL is set from the
second parameter passed by a caller. This routine assumes that call_expr is already
in GIMPLE form. That is, its operands are GIMPLE values and the function call
needs no further simplification. All the call flags in call_expr are copied over to the
new GIMPLE_CALL.

gcall *gimple_build_call_vec (tree fn, vec<tree> args) [GIMPLE function]
Identical to gimple_build_call but the arguments are stored in a vec<tree>.

tree gimple_call_lhs (gimple g) [GIMPLE function]
Return the LHS of call statement G.

tree * gimple_call_lhs_ptr (gimple g) [GIMPLE function]
Return a pointer to the LHS of call statement G.

void gimple_call_set_lhs (gimple g, tree lhs) [GIMPLE function]
Set LHS to be the LHS operand of call statement G.

tree gimple_call_fn (gimple g) [GIMPLE function]
Return the tree node representing the function called by call statement G.

void gimple_call_set_fn (gcall *g, tree fn) [GIMPLE function]
Set FN to be the function called by call statement G. This has to be a gimple value
specifying the address of the called function.



Chapter 12: GIMPLE 227

tree gimple_call_fndecl (gimple g) [GIMPLE function]
If a given GIMPLE_CALL’s callee is a FUNCTION_DECL, return it. Otherwise return NULL.
This function is analogous to get_callee_fndecl in GENERIC.

tree gimple_call_set_fndecl (gimple g, tree fndecl) [GIMPLE function]
Set the called function to FNDECL.

tree gimple_call_return_type (const gcall *g) [GIMPLE function]
Return the type returned by call statement G.

tree gimple_call_chain (gimple g) [GIMPLE function]
Return the static chain for call statement G.

void gimple_call_set_chain (gcall *g, tree chain) [GIMPLE function]
Set CHAIN to be the static chain for call statement G.

unsigned gimple_call_num_args (gimple g) [GIMPLE function]
Return the number of arguments used by call statement G.

tree gimple_call_arg (gimple g, unsigned index) [GIMPLE function]
Return the argument at position INDEX for call statement G. The first argument is 0.

tree * gimple_call_arg_ptr (gimple g, unsigned index) [GIMPLE function]
Return a pointer to the argument at position INDEX for call statement G.

void gimple_call_set_arg (gimple g, unsigned index, tree [GIMPLE function]

arg)

Set ARG to be the argument at position INDEX for call statement G.

void gimple_call_set_tail (gcall *s) [GIMPLE function]
Mark call statement S as being a tail call (i.e., a call just before the exit of a function).
These calls are candidate for tail call optimization.

bool gimple_call_tail_p (gcall *s) [GIMPLE function]
Return true if GIMPLE_CALL S is marked as a tail call.

bool gimple_call_noreturn_p (gimple s) [GIMPLE function]
Return true if S is a noreturn call.

gimple gimple_call_copy_skip_args (gcall *stmt, bitmap [GIMPLE function]
args_to_skip)
Build a GIMPLE_CALL identical to STMT but skipping the arguments in the positions
marked by the set ARGS_TO_SKIP.

12.8.5 GIMPLE_CATCH

gcatch *gimple_build_catch (tree types, gimple_seq handler)  [GIMPLE function]
Build a GIMPLE_CATCH statement. TYPES are the tree types this catch handles.
HANDLER is a sequence of statements with the code for the handler.

tree gimple_catch_types (const gcatch *g) [GIMPLE function]
Return the types handled by GIMPLE_CATCH statement G.



228 GNU Compiler Collection (GCC) Internals

tree * gimple_catch_types_ptr (gcatch *g) [GIMPLE function]
Return a pointer to the types handled by GIMPLE_CATCH statement G.

gimple_seq gimple_catch_handler (gcatch *g) [GIMPLE function]
Return the GIMPLE sequence representing the body of the handler of GIMPLE_CATCH
statement G.

void gimple_catch_set_types (gcatch *g, tree t) [GIMPLE function]
Set T to be the set of types handled by GIMPLE_CATCH G.
void gimple_catch_set_handler (gcatch *g, gimple_seq [GIMPLE function]
handler)

Set HANDLER to be the body of GIMPLE_CATCH G.
12.8.6 GIMPLE_COND

gcond *gimple_build_cond ( enum tree_code pred-code, tree [GIMPLE function]
lhs, tree rhs, tree t_label, tree f_label)

Build a GIMPLE_COND statement. A GIMPLE_COND statement compares LHS and RHS

and if the condition in PRED_CODE is true, jump to the label in t_label, otherwise

jump to the label in f_label. PRED_CODE are relational operator tree codes like
EQ_EXPR, LT_EXPR, LE_EXPR, NE_EXPR, etc.

gcond *gimple_build_cond_from_tree (tree cond, tree [GIMPLE function]
t_label, tree f_label)
Build a GIMPLE_COND statement from the conditional expression tree COND. T_LABEL
and F_LABEL are as in gimple_build_cond.

enum tree_code gimple_cond_code (gimple g) [GIMPLE function]
Return the code of the predicate computed by conditional statement G.

void gimple_cond_set_code (gcond *g, enum tree_code code)  [GIMPLE function]
Set CODE to be the predicate code for the conditional statement G.

tree gimple_cond_lhs (gimple g) [GIMPLE function]
Return the LHS of the predicate computed by conditional statement G.

void gimple_cond_set_lhs (gcond *g, tree lhs) [GIMPLE function]
Set LHS to be the LHS operand of the predicate computed by conditional statement G.

tree gimple_cond_rhs (gimple g) [GIMPLE function]
Return the RHS operand of the predicate computed by conditional G.

void gimple_cond_set_rhs (gcond *g, tree rhs) [GIMPLE function]
Set RHS to be the RHS operand of the predicate computed by conditional statement G.

tree gimple_cond_true_label (const gcond *g) [GIMPLE function]
Return the label used by conditional statement G when its predicate evaluates to true.

void gimple_cond_set_true_label (gcond *g, tree label) [GIMPLE function]
Set LABEL to be the label used by conditional statement G when its predicate evaluates
to true.



Chapter 12: GIMPLE 229

void gimple_cond_set_false_label (gcond *g, tree label) [GIMPLE function]
Set LABEL to be the label used by conditional statement G when its predicate evaluates
to false.

tree gimple_cond_false_label (const gcond *g) [GIMPLE function]

Return the label used by conditional statement G when its predicate evaluates to false.

void gimple_cond_make_false (gcond *g) [GIMPLE function]
Set the conditional COND_STMT to be of the form ’if (1 == 0)’.

void gimple_cond_make_true (gcond *g) [GIMPLE function]
Set the conditional COND_STMT to be of the form ’if (1 == 1)’

12.8.7 GIMPLE_DEBUG

gdebug *gimple_build_debug_bind (tree var, tree value, [GIMPLE function]
gimple stmt)

Build a GIMPLE_DEBUG statement with GIMPLE_DEBUG_BIND subcode. The effect of
this statement is to tell debug information generation machinery that the value of
user variable var is given by value at that point, and to remain with that value until
var runs out of scope, a dynamically-subsequent debug bind statement overrides the
binding, or conflicting values reach a control flow merge point. Even if components of
the value expression change afterwards, the variable is supposed to retain the same
value, though not necessarily the same location.

It is expected that var be most often a tree for automatic user variables (VAR_DECL
or PARM_DECL) that satisfy the requirements for gimple registers, but it may also be
a tree for a scalarized component of a user variable (ARRAY_REF, COMPONENT_REF), or
a debug temporary (DEBUG_EXPR_DECL).

As for value, it can be an arbitrary tree expression, but it is recommended that it be
in a suitable form for a gimple assignment RHS. It is not expected that user variables
that could appear as var ever appear in value, because in the latter we’d have their
SSA_NAMEs instead, but even if they were not in SSA form, user variables appearing
in value are to be regarded as part of the executable code space, whereas those in
var are to be regarded as part of the source code space. There is no way to refer to
the value bound to a user variable within a value expression.

If value is GIMPLE_DEBUG_BIND_NOVALUE, debug information generation machinery is
informed that the variable var is unbound, i.e., that its value is indeterminate, which
sometimes means it is really unavailable, and other times that the compiler could not
keep track of it.

Block and location information for the newly-created stmt are taken from stmt, if
given.

tree gimple_debug_bind_get_var (gimple stmt) [GIMPLE function]
Return the user variable var that is bound at stmt.

tree gimple_debug_bind_get_value (gimple stmt) [GIMPLE function]
Return the value expression that is bound to a user variable at stmt.



230 GNU Compiler Collection (GCC) Internals

tree * gimple_debug_bind_get_value_ptr (gimple stmt) [GIMPLE function]
Return a pointer to the value expression that is bound to a user variable at stmt.

void gimple_debug_bind_set_var (gimple stmt, tree var) [GIMPLE function]
Modify the user variable bound at stmt to var.

void gimple_debug_bind_set_value (gimple stmt, tree var) [GIMPLE function]
Modify the value bound to the user variable bound at stmt to value.

void gimple_debug_bind_reset_value (gimple stmt) [GIMPLE function]
Modify the value bound to the user variable bound at stmt so that the variable
becomes unbound.

bool gimple_debug_bind_has_value_p (gimple stmt) [GIMPLE function]
Return TRUE if stmt binds a user variable to a value, and FALSE if it unbinds the
variable.

gimple gimple_build_debug_begin_stmt (tree block, [GIMPLE function]

location_t location)
Build a GIMPLE_DEBUG statement with GIMPLE_DEBUG_BEGIN_STMT subcode. The
effect of this statement is to tell debug information generation machinery that the
user statement at the given location and block starts at the point at which the
statement is inserted. The intent is that side effects (e.g. variable bindings) of all
prior user statements are observable, and that none of the side effects of subsequent
user statements are.

gimple gimple_build_debug_inline_entry (tree block, [GIMPLE function]
location_t location)

Build a GIMPLE_DEBUG statement with GIMPLE_DEBUG_INLINE_ENTRY subcode. The
effect of this statement is to tell debug information generation machinery that a
function call at location underwent inline substitution, that block is the enclosing
lexical block created for the substitution, and that at the point of the program in
which the stmt is inserted, all parameters for the inlined function are bound to the
respective arguments, and none of the side effects of its stmts are observable.

12.8.8 GIMPLE_EH_FILTER

geh_filter *gimple_build_eh_filter (tree types, [GIMPLE function]
gimple_seq failure)
Build a GIMPLE_EH_FILTER statement. TYPES are the filter’s types. FAILURE is a
sequence with the filter’s failure action.

tree gimple_eh_filter_types (gimple g) [GIMPLE function]
Return the types handled by GIMPLE_EH_FILTER statement G.

tree * gimple_eh_filter_types_ptr (gimple g) [GIMPLE function]
Return a pointer to the types handled by GIMPLE_EH_FILTER statement G.

gimple_seq gimple_eh_filter_failure (gimple g) [GIMPLE function]
Return the sequence of statement to execute when GIMPLE_EH_FILTER statement fails.



Chapter 12: GIMPLE 231

void gimple_eh_filter_set_types (geh_filter *g, tree types) [GIMPLE function]
Set TYPES to be the set of types handled by GIMPLE_EH_FILTER G.

void gimple_eh_filter_set_failure (geh_filter *g, [GIMPLE function]
gimple_seq failure)
Set FAILURE to be the sequence of statements to execute on failure for GIMPLE_EH_
FILTER G.

tree gimple_eh_must_not_throw_fndecl ( geh_mnt [GIMPLE function]
*eh_mnt_stmt)
Get the function decl to be called by the MUST_NOT_THROW region.

void gimple_eh_must_not_throw_set_fndecl ( geh-mnt [GIMPLE function]
*eh_mnt_stmt, tree decl)
Set the function decl to be called by GS to DECL.

12.8.9 GIMPLE_LABEL

glabel *gimple_build_label (tree label) [GIMPLE function]
Build a GIMPLE_LABEL statement with corresponding to the tree label, LABEL.

tree gimple_label_label (const glabel *g) [GIMPLE function]
Return the LABEL_DECL node used by GIMPLE_LABEL statement G.

void gimple_label_set_label (glabel *g, tree label) [GIMPLE function]
Set LABEL to be the LABEL_DECL node used by GIMPLE_LABEL statement G.

12.8.10 GIMPLE_GOTO

ggoto *gimple_build_goto (tree dest) [GIMPLE function]
Build a GIMPLE_GOTO statement to label DEST.

tree gimple_goto_dest (gimple g) [GIMPLE function]
Return the destination of the unconditional jump G.

void gimple_goto_set_dest (ggoto *g, tree dest) [GIMPLE function]
Set DEST to be the destination of the unconditional jump G.

12.8.11 GIMPLE_NOP

gimple gimple_build_nop (void) [GIMPLE function]
Build a GIMPLE_NOP statement.

bool gimple_nop_p (gimple g) [GIMPLE function]
Returns TRUE if statement G is a GIMPLE_NOP.

12.8.12 GIMPLE_OMP_ATOMIC_LOAD

gomp_atomic_load *gimple_build_omp_atomic_load ( tree = [GIMPLE function]
lhs, tree rhs)
Build a GIMPLE_OMP_ATOMIC_LOAD statement. LHS is the left-hand side of the assign-
ment. RHS is the right-hand side of the assignment.



232 GNU Compiler Collection (GCC) Internals

void gimple_omp_atomic_load_set_lhs ( gomp_atomic_load [GIMPLE function]
*g, tree lhs)
Set the LHS of an atomic load.

tree gimple_omp_atomic_load_lhs ( const [GIMPLE function]
gomp_atomic_load *g)
Get the LHS of an atomic load.

void gimple_omp_atomic_load_set_rhs ( gomp_atomic_load [GIMPLE function]
*g, tree rhs)
Set the RHS of an atomic set.

tree gimple_omp_atomic_load_rhs ( const [GIMPLE function]
gomp_atomic_load *g)
Get the RHS of an atomic set.

12.8.13 GIMPLE_OMP_ATOMIC_STORE

gomp_atomic_store *gimple_build_omp_atomic_store ( [GIMPLE function]
tree val)
Build a GIMPLE_OMP_ATOMIC_STORE statement. VAL is the value to be stored.

void gimple_omp_atomic_store_set_val ( [GIMPLE function]
gomp_atomic_store *g, tree val)
Set the value being stored in an atomic store.

tree gimple_omp_atomic_store_val ( const [GIMPLE function]
gomp_atomic_store *g)
Return the value being stored in an atomic store.

12.8.14 GIMPLE_QOMP_CONTINUE

gomp_continue *gimple_build_omp_continue ( tree [GIMPLE function]
control_def, tree control_use)
Build a GIMPLE_OMP_CONTINUE statement. CONTROL_DEF is the definition of the con-
trol variable. CONTROL_USE is the use of the control variable.

tree gimple_omp_continue_control_def ( const [GIMPLE function]
gomp_continue *s)
Return the definition of the control variable on a GIMPLE_OMP_CONTINUE in S.

tree gimple_omp_continue_control_def_ptr ( [GIMPLE function]
gomp_continue *s)
Same as above, but return the pointer.

tree gimple_omp_continue_set_control_def ( [GIMPLE function]
gomp_continue *s)
Set the control variable definition for a GIMPLE_OMP_CONTINUE statement in S.

tree gimple_omp_continue_control_use ( const [GIMPLE function]
gomp_continue *s)
Return the use of the control variable on a GIMPLE_OMP_CONTINUE in S.



Chapter 12: GIMPLE 233

tree gimple_omp_continue_control_use_ptr ( [GIMPLE function]
gomp_continue *s)
Same as above, but return the pointer.

tree gimple_omp_continue_set_control_use ( [GIMPLE function]
gomp_continue *s)
Set the control variable use for a GIMPLE_OMP_CONTINUE statement in S.

12.8.15 GIMPLE_OMP_CRITICAL

gomp_critical *gimple_build_omp_critical ( gimple_seq [GIMPLE function]
body, tree name)
Build a GIMPLE_OMP_CRITICAL statement. BODY is the sequence of statements for
which only one thread can execute. NAME is an optional identifier for this critical
block.

tree gimple_omp_critical_name ( const gomp_critical *g) [GIMPLE function]
Return the name associated with OMP_CRITICAL statement G.

tree * gimple_omp_critical_name_ptr ( gomp-_critical *g) [GIMPLE function]
Return a pointer to the name associated with OMP critical statement G.
void gimple_omp_critical_set_name ( gomp-_critical *g, [GIMPLE function]
tree name)

Set NAME to be the name associated with OMP critical statement G.
12.8.16 GIMPLE_OMP_FOR

gomp_for *gimple_build_omp_for (gimple_seq body, tree [GIMPLE function]

clauses, tree index, tree initial, tree final, tree incr, gimple_seq pre_body, enum
tree_code omp_for_cond)

Build a GIMPLE_OMP_FOR statement. BODY is sequence of statements inside the for

loop. CLAUSES, are any of the loop construct’s clauses. PRE_BODY is the sequence of

statements that are loop invariant. INDEX is the index variable. INITIAL is the initial

value of INDEX. FINAL is final value of INDEX. OMP_FOR_COND is the predicate

used to compare INDEX and FINAL. INCR is the increment expression.

tree gimple_omp_for_clauses (gimple g) [GIMPLE function]
Return the clauses associated with OMP_FOR G.

tree * gimple_omp_for_clauses_ptr (gimple g) [GIMPLE function]
Return a pointer to the OMP_FOR G.

void gimple_omp_for_set_clauses (gimple g, tree clauses) [GIMPLE function]
Set CLAUSES to be the list of clauses associated with OMP_FOR G.

tree gimple_omp_for_index (gimple g) [GIMPLE function]
Return the index variable for OMP_FOR G.

tree * gimple_omp_for_index_ptr (gimple g) [GIMPLE function]
Return a pointer to the index variable for OMP_FOR G.



234 GNU Compiler Collection (GCC) Internals

void gimple_omp_for_set_index (gimple g, tree index)
Set INDEX to be the index variable for OMP_FOR G.

tree gimple_omp_for_initial (gimple g)
Return the initial value for OMP_FOR G.

tree * gimple_omp_for_initial_ptr (gimple g)
Return a pointer to the initial value for OMP_FOR G.

void gimple_omp_for_set_initial (gimple g, tree initial)
Set INITIAL to be the initial value for OMP_FOR G.

tree gimple_omp_for_final (gimple g)
Return the final value for OMP_FOR G.

tree * gimple_omp_for_final_ptr (gimple g)
turn a pointer to the final value for OMP_FOR G.

void gimple_omp_for_set_final (gimple g, tree final)
Set FINAL to be the final value for OMP_FOR G.

tree gimple_omp_for_incr (gimple g)
Return the increment value for OMP_FOR G.

tree * gimple_omp_for_incr_ptr (gimple g)
Return a pointer to the increment value for OMP_FOR G.

void gimple_omp_for_set_incr (gimple g, tree incr)
Set INCR to be the increment value for OMP_FOR G.

gimple_seq gimple_omp_for_pre_body (gimple g)

[GIMPLE function]

[GIMPLE function]

[GIMPLE function]

[GIMPLE function]

[GIMPLE function]

[GIMPLE function]

[GIMPLE function]

[GIMPLE function]

[GIMPLE function]

[GIMPLE function]

[GIMPLE function]

Return the sequence of statements to execute before the OMP_FOR statement G starts.

void gimple_omp_for_set_pre_body (gimple g, gimple_seq

pre_body)

[GIMPLE function]

Set PRE_BODY to be the sequence of statements to execute before the OMP_FOR state-

ment G starts.

void gimple_omp_for_set_cond (gimple g, enum tree_code

cond)
Set COND to be the condition code for OMP_FOR G.

enum tree_code gimple_omp_for_cond (gimple g)
Return the condition code associated with OMP_FOR G.

12.8.17 GIMPLE_OMP_MASTER

gimple gimple_build_omp_master (gimple_seq body)

[GIMPLE function]

[GIMPLE function]

[GIMPLE function]

Build a GIMPLE_OMP_MASTER statement. BODY is the sequence of statements to be

executed by just the master.



Chapter 12: GIMPLE 235

12.8.18 GIMPLE_OMP_ORDERED

gimple gimple_build_omp_ordered (gimple_seq body) [GIMPLE function]
Build a GIMPLE_OMP_ORDERED statement.

BODY is the sequence of statements inside a loop that will executed in sequence.
12.8.19 GIMPLE_OMP_PARALLEL

gomp_parallel *gimple_build_omp_parallel ( gimple_seq [GIMPLE function]
body, tree clauses, tree child_fn, tree data_arg)
Build a GIMPLE_OMP_PARALLEL statement.

BODY is sequence of statements which are executed in parallel. CLAUSES, are the OMP
parallel construct’s clauses. CHILD_FN is the function created for the parallel threads to
execute. DATA_ARG are the shared data argument(s).

bool gimple_omp_parallel_combined_p (gimple g) [GIMPLE function]
Return true if OMP parallel statement G has the GF_OMP_PARALLEL_COMBINED flag set.

void gimple_omp_parallel_set_combined_p (gimple g) [GIMPLE function]
Set the GF_OMP_PARALLEL_COMBINED field in OMP parallel statement G.

gimple_seq gimple_omp_body (gimple g) [GIMPLE function]
Return the body for the OMP statement G.

void gimple_omp_set_body (gimple g, gimple_seq body) [GIMPLE function]
Set BODY to be the body for the OMP statement G.

tree gimple_omp_parallel_clauses (gimple g) [GIMPLE function]
Return the clauses associated with OMP_PARALLEL G.

tree * gimple_omp_parallel_clauses_ptr ( gomp_parallel [GIMPLE function]

*g)

Return a pointer to the clauses associated with OMP_PARALLEL G.

void gimple_omp_parallel_set_clauses ( gomp_parallel [GIMPLE function]
*g, tree clauses)
Set CLAUSES to be the list of clauses associated with OMP_PARALLEL G.

tree gimple_omp_parallel_child_fn ( const gomp_parallel [GIMPLE function]
*

g)
Return the child function used to hold the body of OMP_PARALLEL G.

tree * gimple_omp_parallel_child_fn_ptr ( [GIMPLE function]
gomp_parallel *g)
Return a pointer to the child function used to hold the body of OMP_PARALLEL G.

void gimple_omp_parallel_set_child_fn ( gomp_parallel [GIMPLE function]
*g, tree child_fn)
Set CHILD_FN to be the child function for OMP_PARALLEL G.



236 GNU Compiler Collection (GCC) Internals

tree gimple_omp_parallel_data_arg ( const gomp_parallel [GIMPLE function]
*
8)
Return the artificial argument used to send variables and values from the parent to
the children threads in OMP_PARALLEL G.

tree * gimple_omp_parallel_data_arg_ptr ( [GIMPLE function]
gomp_parallel *g)
Return a pointer to the data argument for OMP_PARALLEL G.

void gimple_omp_parallel_set_data_arg ( gomp_parallel [GIMPLE function]
*g, tree data_arg)
Set DATA_ARG to be the data argument for OMP_PARALLEL G.

12.8.20 GIMPLE_OMP_RETURN

gimple gimple_build_omp_return (bool wait_p) [GIMPLE function]
Build a GIMPLE_OMP_RETURN statement. WAIT_P is true if this is a non-waiting return.

void gimple_omp_return_set_nowait (gimple s) [GIMPLE function]
Set the nowait flag on GIMPLE_OMP_RETURN statement S.

bool gimple_omp_return_nowait_p (gimple g) [GIMPLE function]
Return true if OMP return statement G has the GF_OMP_RETURN_NOWAIT flag set.

12.8.21 GIMPLE_QOMP_SECTION

gimple gimple_build_omp_section (gimple_seq body) [GIMPLE function]
Build a GIMPLE_OMP_SECTION statement for a sections statement.

BODY is the sequence of statements in the section.

bool gimple_omp_section_last_p (gimple g) [GIMPLE function]
Return true if OMP section statement G has the GF_OMP_SECTION_LAST flag set.

void gimple_omp_section_set_last (gimple g) [GIMPLE function]
Set the GF_OMP_SECTION_LAST flag on G.

12.8.22 GIMPLE_QOMP_SECTIONS

gomp_sections *gimple_build_omp_sections ( gimple_seq [GIMPLE function]
body, tree clauses)
Build a GIMPLE_OMP_SECTIONS statement. BODY is a sequence of section statements.
CLAUSES are any of the OMP sections construct’s clauses: private, firstprivate, lastpri-
vate, reduction, and nowait.

gimple gimple_build_omp_sections_switch (void) [GIMPLE function]
Build a GIMPLE_OMP_SECTIONS_SWITCH statement.

tree gimple_omp_sections_control (gimple g) [GIMPLE function]
Return the control variable associated with the GIMPLE_OMP_SECTIONS in G.



Chapter 12: GIMPLE 237

tree * gimple_omp_sections_control_ptr (gimple g) [GIMPLE function]
Return a pointer to the clauses associated with the GIMPLE_OMP_SECTIONS in G.
void gimple_omp_sections_set_control (gimple g, tree [GIMPLE function]
control)

Set CONTROL to be the set of clauses associated with the GIMPLE_OMP_SECTIONS in G.

tree gimple_omp_sections_clauses (gimple g) [GIMPLE function]
Return the clauses associated with OMP_SECTIONS G.
tree * gimple_omp_sections_clauses_ptr (gimple g) [GIMPLE function]
Return a pointer to the clauses associated with OMP_SECTIONS G.
void gimple_omp_sections_set_clauses (gimple g, tree [GIMPLE function]
clauses)

Set CLAUSES to be the set of clauses associated with OMP_SECTIONS G.
12.8.23 GIMPLE_OMP_SINGLE

gomp_single *gimple_build_omp_single ( gimple_seq body, [GIMPLE function]
tree clauses)
Build a GIMPLE_OMP_SINGLE statement. BODY is the sequence of statements that will
be executed once. CLAUSES are any of the OMP single construct’s clauses: private,
firstprivate, copyprivate, nowait.

tree gimple_omp_single_clauses (gimple g) [GIMPLE function]
Return the clauses associated with OMP_SINGLE G.

tree * gimple_omp_single_clauses_ptr (gimple g) [GIMPLE function]
Return a pointer to the clauses associated with OMP_SINGLE G.

void gimple_omp_single_set_clauses ( gomp-_single *g, [GIMPLE function]
tree clauses)
Set CLAUSES to be the clauses associated with OMP_SINGLE G.

12.8.24 GIMPLE_PHI

unsigned gimple_phi_capacity (gimple g) [GIMPLE function]
Return the maximum number of arguments supported by GIMPLE_PHI G.

unsigned gimple_phi_num_args (gimple g) [GIMPLE function]
Return the number of arguments in GIMPLE_PHI G. This must always be exactly the
number of incoming edges for the basic block holding G.

tree gimple_phi_result (gimple g) [GIMPLE function]
Return the SSA name created by GIMPLE_PHI G.

tree * gimple_phi_result_ptr (gimple g) [GIMPLE function]
Return a pointer to the SSA name created by GIMPLE_PHI G.

void gimple_phi_set_result (gphi *g, tree result) [GIMPLE function]
Set RESULT to be the SSA name created by GIMPLE_PHI G.



238 GNU Compiler Collection (GCC) Internals

struct phi_arg_d * gimple_phi_arg (gimple g, index) [GIMPLE function]
Return the PHI argument corresponding to incoming edge INDEX for GIMPLE_PHI G.

void gimple_phi_set_arg (gphi *g, index, struct phi_arg-d * [GIMPLE function]
phiarg)
Set PHIARG to be the argument corresponding to incoming edge INDEX for GIMPLE_PHI
G.

12.8.25 GIMPLE_RESX

gresx *gimple_build_resx (int region) [GIMPLE function]
Build a GIMPLE_RESX statement which is a statement. This statement is a placeholder
for _Unwind_Resume before we know if a function call or a branch is needed. REGION
is the exception region from which control is flowing.

int gimple_resx_region (const gresx *g) [GIMPLE function]
Return the region number for GIMPLE_RESX G.

void gimple_resx_set_region (gresx *g, int region) [GIMPLE function]
Set REGION to be the region number for GIMPLE_RESX G.

12.8.26 GIMPLE_RETURN

greturn *gimple_build_return (tree retval) [GIMPLE function]
Build a GIMPLE_RETURN statement whose return value is retval.

tree gimple_return_retval (const greturn *g) [GIMPLE function]
Return the return value for GIMPLE_RETURN G.

void gimple_return_set_retval (greturn *g, tree retval) [GIMPLE function]
Set RETVAL to be the return value for GIMPLE_RETURN G.

12.8.27 GIMPLE_SWITCH

gswitch *gimple_build_switch (tree index, tree [GIMPLE function]
default_label, vec<tree> *args)

Build a GIMPLE_SWITCH statement. INDEX is the index variable to switch on, and

DEFAULT_LABEL represents the default label. ARGS is a vector of CASE_LABEL_EXPR

trees that contain the non-default case labels. Each label is a tree of code CASE_

LABEL_EXPR.
unsigned gimple_switch_num_labels ( const gswitch *g) [GIMPLE function]
Return the number of labels associated with the switch statement G.
void gimple_switch_set_num_labels (gswitch *g, unsigned [GIMPLE function]
nlabels)

Set NLABELS to be the number of labels for the switch statement G.

tree gimple_switch_index (const gswitch *g) [GIMPLE function]
Return the index variable used by the switch statement G.



Chapter 12: GIMPLE 239

void gimple_switch_set_index (gswitch *g, tree index) [GIMPLE function]
Set INDEX to be the index variable for switch statement G.

tree gimple_switch_label (const gswitch *g, unsigned index)  [GIMPLE function]
Return the label numbered INDEX. The default label is 0, followed by any labels in a
switch statement.

void gimple_switch_set_label (gswitch *g, unsigned index, [GIMPLE function]
tree label)
Set the label number INDEX to LABEL. 0 is always the default label.

tree gimple_switch_default_label ( const gswitch *g) [GIMPLE function]
Return the default label for a switch statement.
void gimple_switch_set_default_label (gswitch *g, tree [GIMPLE function]
label)

Set the default label for a switch statement.
12.8.28 GIMPLE_TRY

gtry *gimple_build_try (gimple_seq eval, gimple_seq [GIMPLE function]
cleanup, unsigned int kind)
Build a GIMPLE_TRY statement. EVAL is a sequence with the expression to evaluate.
CLEANUP is a sequence of statements to run at clean-up time. KIND is the enumeration
value GIMPLE_TRY_CATCH if this statement denotes a try/catch construct or GIMPLE_
TRY_FINALLY if this statement denotes a try/finally construct.

enum gimple_try_flags gimple_try_kind (gimple g) [GIMPLE function]
Return the kind of try block represented by GIMPLE_TRY G. This is either GIMPLE_
TRY_CATCH or GIMPLE_TRY_FINALLY.

bool gimple_try_catch_is_cleanup (gimple g) [GIMPLE function]
Return the GIMPLE_TRY_CATCH_IS_CLEANUP flag.

gimple_seq gimple_try_eval (gimple g) [GIMPLE function]
Return the sequence of statements used as the body for GIMPLE_TRY G.

gimple_seq gimple_try_cleanup (gimple g) [GIMPLE function]
Return the sequence of statements used as the cleanup body for GIMPLE_TRY G.

void gimple_try_set_catch_is_cleanup (gimple g, bool [GIMPLE function]
catch_is_cleanup)
Set the GIMPLE_TRY_CATCH_IS_CLEANUP flag.

void gimple_try_set_eval (gtry *g, gimple_seq eval) [GIMPLE function]
Set EVAL to be the sequence of statements to use as the body for GIMPLE_TRY G.

void gimple_try_set_cleanup (gtry *g, gimple_seq cleanup) [GIMPLE function]
Set CLEANUP to be the sequence of statements to use as the cleanup body for GIMPLE_
TRY G.



240 GNU Compiler Collection (GCC) Internals

12.8.29 GIMPLE_WITH_CLEANUP_EXPR

gimple gimple_build_wce (gimple_seq cleanup) [GIMPLE function]
Build a GIMPLE_WITH_CLEANUP_EXPR statement. CLEANUP is the clean-up expression.

gimple_seq gimple_wce_cleanup (gimple g) [GIMPLE function]
Return the cleanup sequence for cleanup statement G.

void gimple_wce_set_cleanup (gimple g, gimple_seq cleanup)  [GIMPLE function]
Set CLEANUP to be the cleanup sequence for G.

bool gimple_wce_cleanup_eh_only (gimple g) [GIMPLE function]
Return the CLEANUP_EH_ONLY flag for a WCE tuple.
void gimple_wce_set_cleanup_eh_only (gimple g, bool [GIMPLE function]
eh_only_p)

Set the CLEANUP_EH_ONLY flag for a WCE tuple.

12.9 GIMPLE sequences

GIMPLE sequences are the tuple equivalent of STATEMENT_LIST’s used in GENERIC. They
are used to chain statements together, and when used in conjunction with sequence iterators,
provide a framework for iterating through statements.

GIMPLE sequences are of type struct gimple_sequence, but are more commonly passed
by reference to functions dealing with sequences. The type for a sequence pointer is gimple_
seq which is the same as struct gimple_sequence *. When declaring a local sequence, you
can define a local variable of type struct gimple_sequence. When declaring a sequence
allocated on the garbage collected heap, use the function gimple_seq_alloc documented
below.

There are convenience functions for iterating through sequences in the section entitled
Sequence Iterators.

Below is a list of functions to manipulate and query sequences.

void gimple_seq_add_stmt (gimple_seq *seq, gimple g) [GIMPLE function]
Link a gimple statement to the end of the sequence *SEQ if G is not NULL. If *SEQ is
NULL, allocate a sequence before linking.

void gimple_seq_add_seq (gimple_seq *dest, gimple_seq src) [GIMPLE function]
Append sequence SRC to the end of sequence *DEST if SRC is not NULL. If *DEST is
NULL, allocate a new sequence before appending.

gimple_seq gimple_seq_deep_copy (gimple_seq src) [GIMPLE function]
Perform a deep copy of sequence SRC and return the result.

gimple_seq gimple_seq_reverse (gimple_seq seq) [GIMPLE function]
Reverse the order of the statements in the sequence SEQ. Return SEQ.

gimple gimple_seq_first (gimple_seq s) [GIMPLE function]
Return the first statement in sequence S.



Chapter 12: GIMPLE 241

gimple gimple_seq_last (gimple_seq s) [GIMPLE function]
Return the last statement in sequence S.

void gimple_seq_set_last (gimple_seq s, gimple last) [GIMPLE function]
Set the last statement in sequence S to the statement in LAST.

void gimple_seq_set_first (gimple_seq s, gimple first) [GIMPLE function]
Set the first statement in sequence S to the statement in FIRST.

void gimple_seq_init (gimple_seq s) [GIMPLE function]
Initialize sequence S to an empty sequence.

gimple_seq gimple_seq_alloc (void) [GIMPLE function]
Allocate a new sequence in the garbage collected store and return it.

void gimple_seq_copy (gimple_seq dest, gimple_seq src) [GIMPLE function]
Copy the sequence SRC into the sequence DEST.

bool gimple_seq_empty_p (gimple_seq s) [GIMPLE function]
Return true if the sequence S is empty.

gimple_seq bb_seq (basic_block bb) [GIMPLE function]

Returns the sequence of statements in BB.

void set_bb_seq (basic_block bb, gimple_seq seq) [GIMPLE function]
Sets the sequence of statements in BB to SEQ.

bool gimple_seq_singleton_p (gimple_seq seq) [GIMPLE function]
Determine whether SEQ contains exactly one statement.

12.10 Sequence iterators

Sequence iterators are convenience constructs for iterating through statements in a sequence.
Given a sequence SEQ, here is a typical use of gimple sequence iterators:
gimple_stmt_iterator gsi;

for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple g = gsi_stmt (gsi);
/* Do something with gimple statement G. */
}

Backward iterations are possible:
for (gsi = gsi_last (seq); !gsi_end_p (gsi); gsi_prev (&gsi))
Forward and backward iterations on basic blocks are possible with gsi_start_bb and
gsi_last_bb.

In the documentation below we sometimes refer to enum gsi_iterator_update. The
valid options for this enumeration are:

e GSI_NEW_STMT Only valid when a single statement is added. Move the iterator to it.

e GSI_SAME_STMT Leave the iterator at the same statement.

e GSI_CONTINUE_LINKING Move iterator to whatever position is suitable for linking other
statements in the same direction.

Below is a list of the functions used to manipulate and use statement iterators.



242 GNU Compiler Collection (GCC) Internals

gimple_stmt_iterator gsi_start (gimple_seq seq) [GIMPLE function]
Return a new iterator pointing to the sequence SEQ’s first statement. If SEQ is empty,
the iterator’s basic block is NULL. Use gsi_start_bb instead when the iterator needs
to always have the correct basic block set.

gimple_stmt_iterator gsi_start_bb (basic_block bb) [GIMPLE function]
Return a new iterator pointing to the first statement in basic block BB.

gimple_stmt_iterator gsi_last (gimple_seq seq) [GIMPLE function]
Return a new iterator initially pointing to the last statement of sequence SEQ. If
SEQ is empty, the iterator’s basic block is NULL. Use gsi_last_bb instead when the
iterator needs to always have the correct basic block set.

gimple_stmt_iterator gsi_last_bb (basic_block bb) [GIMPLE function]
Return a new iterator pointing to the last statement in basic block BB.

bool gsi_end_p (gimple_stmt_iterator i) [GIMPLE function]
Return TRUE if at the end of I.

bool gsi_one_before_end_p (gimple_stmt_iterator i) [GIMPLE function]
Return TRUE if we’re one statement before the end of I.

void gsi_next (gimple_stmt_iterator *i) [GIMPLE function]
Advance the iterator to the next gimple statement.

void gsi_prev (gimple_stmt_iterator *i) [GIMPLE function]
Advance the iterator to the previous gimple statement.

gimple gsi_stmt (gimple_stmt_iterator i) [GIMPLE function]
Return the current stmt.

gimple_stmt_iterator gsi_after_labels (basic_block bb) [GIMPLE function]
Return a block statement iterator that points to the first non-label statement in block
BB.

gimple * gsi_stmt_ptr (gimple_stmt_iterator *i) [GIMPLE function]

Return a pointer to the current stmt.

basic_block gsi_bb (gimple_stmt_iterator i) [GIMPLE function]
Return the basic block associated with this iterator.

gimple_seq gsi_seq (gimple_stmt_iterator i) [GIMPLE function]
Return the sequence associated with this iterator.

void gsi_remove (gimple_stmt_iterator *i, bool remove_eh_info)  [GIMPLE function]
Remove the current stmt from the sequence. The iterator is updated to point to the
next statement. When REMOVE_EH_INFO is true we remove the statement pointed to
by iterator I from the EH tables. Otherwise we do not modify the EH tables. Generally,
REMOVE_EH_INFO should be true when the statement is going to be removed from the
IL and not reinserted elsewhere.



Chapter 12: GIMPLE 243

void gsi_link_seq_before (gimple_stmt_iterator *i, [GIMPLE function]
gimple_seq seq, enum gsi_iterator_update mode)
Links the sequence of statements SEQ before the statement pointed by iterator I. MODE
indicates what to do with the iterator after insertion (see enum gsi_iterator_update
above).

void gsi_link_before (gimple_stmt_iterator *i, gimple g, [GIMPLE function]
enum gsi_iterator_update mode)
Links statement G before the statement pointed-to by iterator I. Updates iterator I
according to MODE.

void gsi_link_seq_after (gimple_stmt_iterator *i, [GIMPLE function]
gimple_seq seq, enum gsi_iterator_update mode)
Links sequence SEQ after the statement pointed-to by iterator I. MODE is as in gsi_
insert_after.

void gsi_link_after (gimple_stmt_iterator *i, gimple g, enum  [GIMPLE function]
gsi_iterator_update mode)
Links statement G after the statement pointed-to by iterator I. MODE is as in gsi_
insert_after.

gimple_seq gsi_split_seq_after (gimple_stmt_iterator i) [GIMPLE function]
Move all statements in the sequence after I to a new sequence. Return this new
sequence.

gimple_seq gsi_split_seq_before (gimple_stmt_iterator *i) [GIMPLE function]
Move all statements in the sequence before I to a new sequence. Return this new
sequence.

void gsi_replace (gimple_stmt_iterator *i, gimple stmt, bool [GIMPLE function]
update_eh_info)
Replace the statement pointed-to by I to STMT. If UPDATE_EH_INFO is true, the excep-
tion handling information of the original statement is moved to the new statement.

void gsi_insert_before (gimple_stmt_iterator *i, gimple [GIMPLE function]
stmt, enum gsi_iterator_update mode)
Insert statement STMT before the statement pointed-to by iterator I, update STMT’s
basic block and scan it for new operands. MODE specifies how to update iterator I
after insertion (see enum gsi_iterator_update).

void gsi_insert_seq_before (gimple_stmt_iterator *i, [GIMPLE function]
gimple_seq seq, enum gsi_iterator_update mode)
Like gsi_insert_before, but for all the statements in SEQ.

void gsi_insert_after (gimple_stmt_iterator *i, gimple stmt, [GIMPLE function]
enum gsi_iterator_update mode)
Insert statement STMT after the statement pointed-to by iterator I, update STMT’s
basic block and scan it for new operands. MODE specifies how to update iterator I
after insertion (see enum gsi_iterator_update).



244 GNU Compiler Collection (GCC) Internals

void gsi_insert_seq_after (gimple_stmt_iterator *i, [GIMPLE function]
gimple_seq seq, enum gsi_iterator_update mode)
Like gsi_insert_after, but for all the statements in SEQ.

gimple_stmt_iterator gsi_for_stmt (gimple stmt) [GIMPLE function]
Finds iterator for STMT.

void gsi_move_after (gimple_stmt_iterator *from, [GIMPLE function]
gimple_stmt_iterator *to)
Move the statement at FROM so it comes right after the statement at TO.

void gsi_move_before (gimple_stmt_iterator *from, [GIMPLE function]
gimple_stmt_iterator *to)
Move the statement at FROM so it comes right before the statement at TO.

void gsi_move_to_bb_end (gimple_stmt_iterator *from, [GIMPLE function]
basic_block bb)
Move the statement at FROM to the end of basic block BB.

void gsi_insert_on_edge (edge e, gimple stmt) [GIMPLE function]
Add STMT to the pending list of edge E. No actual insertion is made until a call to
gsi_commit_edge_inserts() is made.

void gsi_insert_seq_on_edge (edge e, gimple_seq seq) [GIMPLE function]
Add the sequence of statements in SEQ to the pending list of edge E. No actual
insertion is made until a call to gsi_commit_edge_inserts() is made.

basic_block gsi_insert_on_edge_immediate (edge e, [GIMPLE function]
gimple stmt)
Similar to gsi_insert_on_edget+gsi_commit_edge_inserts. If a new block has to
be created, it is returned.

void gsi_commit_one_edge_insert (edge e, basic_block [GIMPLE function]
*new_bb)
Commit insertions pending at edge E. If a new block is created, set NEW_BB to this
block, otherwise set it to NULL.

void gsi_commit_edge_inserts (void) [GIMPLE function]
This routine will commit all pending edge insertions, creating any new basic blocks
which are necessary.

12.11 Adding a new GIMPLE statement code

The first step in adding a new GIMPLE statement code, is modifying the file gimple.def,
which contains all the GIMPLE codes. Then you must add a corresponding gimple subclass
located in gimple.h. This in turn, will require you to add a corresponding GTY tag in
gsstruct.def, and code to handle this tag in gss_for_code which is located in gimple.c.

In order for the garbage collector to know the size of the structure you created in
gimple.h, you need to add a case to handle your new GIMPLE statement in gimple_size
which is located in gimple.c.



Chapter 12: GIMPLE 245

You will probably want to create a function to build the new gimple statement in
gimple.c. The function should be called gimple_build_new-tuple-name, and should re-
turn the new tuple as a pointer to the appropriate gimple subclass.

If your new statement requires accessors for any members or operands it may have,
put simple inline accessors in gimple.h and any non-trivial accessors in gimple.c with a
corresponding prototype in gimple.h.

You should add the new statement subclass to the class hierarchy diagram in
gimple.texi.

12.12 Statement and operand traversals

There are two functions available for walking statements and sequences: walk_gimple_
stmt and walk_gimple_seq, accordingly, and a third function for walking the operands in
a statement: walk_gimple_op.

tree walk_gimple_stmt (gimple_stmt_iterator *gsi, [GIMPLE function]
walk_stmt_fn callback_stmt, walk_tree_fn callback_op, struct walk_stmt_info
*wi)

This function is used to walk the current statement in GSI, optionally using traversal
state stored in WI. If WI is NULL, no state is kept during the traversal.

The callback CALLBACK_STMT is called. If CALLBACK_STMT returns true, it means that
the callback function has handled all the operands of the statement and it is not
necessary to walk its operands.

If CALLBACK_STMT is NULL or it returns false, CALLBACK_OP is called on each operand
of the statement via walk_gimple_op. If walk_gimple_op returns non-NULL for any
operand, the remaining operands are not scanned.

The return value is that returned by the last call to walk_gimple_op, or NULL_TREE
if no CALLBACK_QP is specified.

tree walk_gimple_op (gimple stmt, walk_tree_fn callback_op, [GIMPLE function]
struct walk_stmt_info *wi)
Use this function to walk the operands of statement STMT. Every operand is walked
via walk_tree with optional state information in WI.

CALLBACK_OP is called on each operand of STMT via walk_tree. Additional parameters
to walk_tree must be stored in WI. For each operand OP, walk_tree is called as:
walk_tree (&0P, CALLBACK_OP, WI, PSET)

If CALLBACK_OP returns non-NULL for an operand, the remaining operands are not
scanned. The return value is that returned by the last call to walk_tree, or NULL_
TREE if no CALLBACK_QOP is specified.

tree walk_gimple_seq (gimple_seq seq, walk_stmt_fn [GIMPLE function]
callback_stmt, walk_tree_fn callback_op, struct walk_stmt_info *wi)
This function walks all the statements in the sequence SEQ calling walk_gimple_stmt
on each one. WI is as in walk_gimple_stmt. If walk_gimple_stmt returns non-NULL,
the walk is stopped and the value returned. Otherwise, all the statements are walked
and NULL_TREE returned.






Chapter 13: Analysis and Optimization of GIMPLE tuples 247

13 Analysis and Optimization of GIMPLE tuples

GCC uses three main intermediate languages to represent the program during compilation:
GENERIC, GIMPLE and RTL. GENERIC is a language-independent representation gener-
ated by each front end. It is used to serve as an interface between the parser and optimizer.
GENERIC is a common representation that is able to represent programs written in all the
languages supported by GCC.

GIMPLE and RTL are used to optimize the program. GIMPLE is used for target and lan-
guage independent optimizations (e.g., inlining, constant propagation, tail call elimination,
redundancy elimination, etc). Much like GENERIC, GIMPLE is a language independent,
tree based representation. However, it differs from GENERIC in that the GIMPLE gram-
mar is more restrictive: expressions contain no more than 3 operands (except function calls),
it has no control flow structures and expressions with side effects are only allowed on the
right hand side of assignments. See the chapter describing GENERIC and GIMPLE for
more details.

This chapter describes the data structures and functions used in the GIMPLE optimiz-
ers (also known as “tree optimizers” or “middle end”). In particular, it focuses on all
the macros, data structures, functions and programming constructs needed to implement
optimization passes for GIMPLE.

13.1 Annotations

The optimizers need to associate attributes with variables during the optimization process.
For instance, we need to know whether a variable has aliases. All these attributes are stored
in data structures called annotations which are then linked to the field ann in struct tree_
common.

13.2 SSA Operands

Almost every GIMPLE statement will contain a reference to a variable or memory location.
Since statements come in different shapes and sizes, their operands are going to be located
at various spots inside the statement’s tree. To facilitate access to the statement’s operands,
they are organized into lists associated inside each statement’s annotation. Each element
in an operand list is a pointer to a VAR_DECL, PARM_DECL or SSA_NAME tree node. This
provides a very convenient way of examining and replacing operands.

Data flow analysis and optimization is done on all tree nodes representing variables.
Any node for which SSA_VAR_P returns nonzero is considered when scanning statement
operands. However, not all SSA_VAR_P variables are processed in the same way. For the
purposes of optimization, we need to distinguish between references to local scalar variables
and references to globals, statics, structures, arrays, aliased variables, etc. The reason is
simple, the compiler can gather complete data flow information for a local scalar. On the
other hand, a global variable may be modified by a function call, it may not be possible to
keep track of all the elements of an array or the fields of a structure, etc.

The operand scanner gathers two kinds of operands: real and virtual. An operand for
which is_gimple_reg returns true is considered real, otherwise it is a virtual operand. We
also distinguish between uses and definitions. An operand is used if its value is loaded by
the statement (e.g., the operand at the RHS of an assignment). If the statement assigns a



248 GNU Compiler Collection (GCC) Internals

new value to the operand, the operand is considered a definition (e.g., the operand at the
LHS of an assignment).

Virtual and real operands also have very different data flow properties. Real operands
are unambiguous references to the full object that they represent. For instance, given
{
int a, b;
a=>b
}
Since a and b are non-aliased locals, the statement a = b will have one real definition and
one real use because variable a is completely modified with the contents of variable b. Real
definition are also known as killing definitions. Similarly, the use of b reads all its bits.

In contrast, virtual operands are used with variables that can have a partial or ambiguous
reference. This includes structures, arrays, globals, and aliased variables. In these cases, we
have two types of definitions. For globals, structures, and arrays, we can determine from
a statement whether a variable of these types has a killing definition. If the variable does,
then the statement is marked as having a must definition of that variable. However, if a
statement is only defining a part of the variable (i.e. a field in a structure), or if we know
that a statement might define the variable but we cannot say for sure, then we mark that
statement as having a may definition. For instance, given

{

int a, b, *p;

else

p = &b;
*p=5;
return *p;

}

The assignment *p = 5 may be a definition of a or b. If we cannot determine statically
where p is pointing to at the time of the store operation, we create virtual definitions to
mark that statement as a potential definition site for a and b. Memory loads are similarly
marked with virtual use operands. Virtual operands are shown in tree dumps right before
the statement that contains them. To request a tree dump with virtual operands, use the
‘~vops’ option to ‘~fdump-tree’:

{
int a, b, *p;
if (...)
p = &a;
else
p = &b;
# a = VDEF <a>
# b = VDEF <b>
*p=5;
# VUSE <a>
# VUSE <b>

return *p;



Chapter 13: Analysis and Optimization of GIMPLE tuples 249

Notice that VDEF operands have two copies of the referenced variable. This indicates that
this is not a killing definition of that variable. In this case we refer to it as a may definition
or aliased store. The presence of the second copy of the variable in the VDEF operand will
become important when the function is converted into SSA form. This will be used to link
all the non-killing definitions to prevent optimizations from making incorrect assumptions
about them.

Operands are updated as soon as the statement is finished via a call to update_stmt.
If statement elements are changed via SET_USE or SET_DEF, then no further action is re-
quired (i.e., those macros take care of updating the statement). If changes are made by
manipulating the statement’s tree directly, then a call must be made to update_stmt when
complete. Calling one of the bsi_insert routines or bsi_replace performs an implicit call
to update_stmt.

13.2.1 Operand Iterators And Access Routines

Operands are collected by ‘tree-ssa-operands.c’. They are stored inside each statement’s
annotation and can be accessed through either the operand iterators or an access routine.

The following access routines are available for examining operands:

1. SINGLE_SSA_{USE,DEF,TREE}_OPERAND: These accessors will return NULL unless
there is exactly one operand matching the specified flags. If there is exactly one
operand, the operand is returned as either a tree, def _operand_p, or use_operand_p.

tree t = SINGLE_SSA_TREE_OPERAND (stmt, flags);
use_operand_p u = SINGLE_SSA_USE_OPERAND (stmt, SSA_ALL_VIRTUAL_USES);
def_operand_p d = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_ALL_DEFS);

2. ZERO_SSA_QOPERANDS: This macro returns true if there are no operands matching the
specified flags.

if (ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
return;

3. NUM_SSA_QOPERANDS: This macro Returns the number of operands matching 'flags’. This
actually executes a loop to perform the count, so only use this if it is really needed.

int count = NUM_SSA_OPERANDS (stmt, flags)

If you wish to iterate over some or all operands, use the FOR_EACH_SSA_{USE,DEF,TREE} _
OPERAND iterator. For example, to print all the operands for a statement:
void
print_ops (tree stmt)
{
ssa_op_iter;
tree var;

FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_ALL_OPERANDS)
print_generic_expr (stderr, var, TDF_SLIM);
}

How to choose the appropriate iterator:

1. Determine whether you are need to see the operand pointers, or just the trees, and
choose the appropriate macro:

Need Macro:

use_operand_p FOR_EACH_SSA_USE_OPERAND



250 GNU Compiler Collection (GCC) Internals

def_operand_p FOR_EACH_SSA_DEF_OPERAND
tree FOR_EACH_SSA_TREE_OPERAND

2. You need to declare a variable of the type you are interested in, and an ssa_op_iter
structure which serves as the loop controlling variable.

3. Determine which operands you wish to use, and specify the flags of those you are
interested in. They are documented in ‘tree-ssa-operands.h’:

#define SSA_OP_USE 0x01 /* Real USE operands. */
#define SSA_OP_DEF 0x02 /* Real DEF operands. */
#define SSA_OP_VUSE 0x04 /* VUSE operands. */
#define SSA_OP_VDEF 0x08 /* VDEF operands. */

/* These are commonly grouped operand flags. */

#define SSA_OP_VIRTUAL_USES (SSA_OP_VUSE)

#define SSA_OP_VIRTUAL_DEFS (SSA_OP_VDEF)

#define SSA_OP_ALL_VIRTUALS (SSA_OP_VIRTUAL_USES | SSA_OP_VIRTUAL_DEFS)
#define SSA_OP_ALL_USES (SSA_OP_VIRTUAL_USES | SSA_OP_USE)

#define SSA_OP_ALL_DEFS (SSA_OP_VIRTUAL_DEFS | SSA_OP_DEF)

#define SSA_OP_ALL_OPERANDS (SSA_OP_ALL_USES | SSA_OP_ALL_DEFS)

So if you want to look at the use pointers for all the USE and VUSE operands, you would
do something like:

use_operand_p use_p;
ssa_op_iter iter;

FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, (SSA_OP_USE | SSA_OP_VUSE))
{
process_use_ptr (use_p);
}
The TREE macro is basically the same as the USE and DEF macros, only with the use or
def dereferenced via USE_FROM_PTR (use_p) and DEF_FROM_PTR (def_p). Since we aren’t
using operand pointers, use and defs flags can be mixed.

tree var;
ssa_op_iter iter;

FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_VUSE)
{
print_generic_expr (stderr, var, TDF_SLIM);
}
VDEFs are broken into two flags, one for the DEF portion (SSA_OP_VDEF) and one for the
USE portion (SSA_OP_VUSE).

There are many examples in the code, in addition to the documentation in
‘tree-ssa-operands.h’ and ‘ssa-iterators.h’.

There are also a couple of variants on the stmt iterators regarding PHI nodes.

FOR_EACH_PHI_ARG Works exactly like FOR_EACH_SSA_USE_OPERAND, except it works over
PHI arguments instead of statement operands.

/* Look at every virtual PHI use. */
FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_VIRTUAL_USES)
{

my_code;

}

/* Look at every real PHI use. */



Chapter 13: Analysis and Optimization of GIMPLE tuples 251

FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_USES)
my_code;

/* Look at every PHI use. */
FOR_EACH_PHI_ARG (use_p, phi_stmt, iter, SSA_OP_ALL_USES)
my_code;

FOR_EACH_PHI_OR_STMT_{USE,DEF} works exactly like FOR_EACH_SSA_{USE,DEF}_
OPERAND, except it will function on either a statement or a PHI node. These should be used
when it is appropriate but they are not quite as efficient as the individual FOR_EACH_PHI
and FOR_EACH_SSA routines.

FOR_EACH_PHI_OR_STMT_USE (use_operand_p, stmt, iter, flags)
{
my_code;

}

FOR_EACH_PHI_OR_STMT_DEF (def_operand_p, phi, iter, flags)
{
my_code;

}

13.2.2 Immediate Uses

Immediate use information is now always available. Using the immediate use iterators, you
may examine every use of any SSA_NAME. For instance, to change each use of ssa_var to
ssa_var?2 and call fold_stmt on each stmt after that is done:

use_operand_p imm_use_p;

imm_use_iterator iterator;

tree ssa_var, stmt;

FOR_EACH_IMM_USE_STMT (stmt, iterator, ssa_var)
{
FOR_EACH_IMM_USE_ON_STMT (imm_use_p, iterator)
SET_USE (imm_use_p, ssa_var_2);
fold_stmt (stmt);
}
There are 2 iterators which can be used. FOR_EACH_IMM_USE_FAST is used when the

immediate uses are not changed, i.e., you are looking at the uses, but not setting them.

If they do get changed, then care must be taken that things are not changed under the
iterators, so use the FOR_EACH_IMM_USE_STMT and FOR_EACH_IMM_USE_ON_STMT iterators.
They attempt to preserve the sanity of the use list by moving all the uses for a statement
into a controlled position, and then iterating over those uses. Then the optimization can
manipulate the stmt when all the uses have been processed. This is a little slower than the
FAST version since it adds a placeholder element and must sort through the list a bit for
each statement. This placeholder element must be also be removed if the loop is terminated
early. The macro BREAK_FROM_IMM_USE_STMT is provided to do this :

FOR_EACH_IMM_USE_STMT (stmt, iterator, ssa_var)

{
if (stmt == last_stmt)
BREAK_FROM_IMM_USE_STMT (iterator);

FOR_EACH_IMM_USE_ON_STMT (imm_use_p, iterator)
SET_USE (imm_use_p, ssa_var_2);



252 GNU Compiler Collection (GCC) Internals

fold_stmt (stmt);
}
There are checks in verify_ssa which verify that the immediate use list is up to date, as
well as checking that an optimization didn’t break from the loop without using this macro.
It is safe to simply ’break’; from a FOR_EACH_IMM_USE_FAST traverse.

Some useful functions and macros:
1. has_zero_uses (ssa_var) : Returns true if there are no uses of ssa_var.
2. has_single_use (ssa_var) : Returns true if there is only a single use of ssa_var.

single_imm_use (ssa_var, use_operand_p *ptr, tree *stmt) : Returns true if
there is only a single use of ssa_var, and also returns the use pointer and statement
it occurs in, in the second and third parameters.

4. num_imm_uses (ssa_var) : Returns the number of immediate uses of ssa_var. It is
better not to use this if possible since it simply utilizes a loop to count the uses.

5. PHI_ARG_INDEX_FROM_USE (use_p) : Given a use within a PHI node, return the index
number for the use. An assert is triggered if the use isn’t located in a PHI node.

6. USE_STMT (use_p) : Return the statement a use occurs in.

Note that uses are not put into an immediate use list until their statement is actually
inserted into the instruction stream via a bsi_x routine.

It is also still possible to utilize lazy updating of statements, but this should be used only
when absolutely required. Both alias analysis and the dominator optimizations currently

do this.

When lazy updating is being used, the immediate use information is out of date and
cannot be used reliably. Lazy updating is achieved by simply marking statements modified
via calls to gimple_set_modified instead of update_stmt. When lazy updating is no longer
required, all the modified statements must have update_stmt called in order to bring them
up to date. This must be done before the optimization is finished, or verify_ssa will
trigger an abort.

This is done with a simple loop over the instruction stream:

block_stmt_iterator bsi;
basic_block bb;
FOR_EACH_BB (bb)
{
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
update_stmt_if _modified (bsi_stmt (bsi));
}

13.3 Static Single Assignment

Most of the tree optimizers rely on the data flow information provided by the Static Single
Assignment (SSA) form. We implement the SSA form as described in R. Cytron, J. Ferrante,
B. Rosen, M. Wegman, and K. Zadeck. Efficiently Computing Static Single Assignment
Form and the Control Dependence Graph. ACM Transactions on Programming Languages
and Systems, 13(4):451-490, October 1991.

The SSA form is based on the premise that program variables are assigned in exactly one
location in the program. Multiple assignments to the same variable create new versions of
that variable. Naturally, actual programs are seldom in SSA form initially because variables



Chapter 13: Analysis and Optimization of GIMPLE tuples 253

tend to be assigned multiple times. The compiler modifies the program representation so
that every time a variable is assigned in the code, a new version of the variable is created.
Different versions of the same variable are distinguished by subscripting the variable name
with its version number. Variables used in the right-hand side of expressions are renamed
so that their version number matches that of the most recent assignment.

We represent variable versions using SSA_NAME nodes. The renaming process in
‘tree-ssa.c’ wraps every real and virtual operand with an SSA_NAME node which contains
the version number and the statement that created the SSA_NAME. Only definitions and
virtual definitions may create new SSA_NAME nodes.

Sometimes, flow of control makes it impossible to determine the most recent version of a
variable. In these cases, the compiler inserts an artificial definition for that variable called
PHI function or PHI node. This new definition merges all the incoming versions of the
variable to create a new name for it. For instance,

if (...)

a_l =5;
else if (...)
a_2 = 2;

else
a_3 = 13;

# a_4 = PHI <a_1, a_2, a_3>
return a_4;

Since it is not possible to determine which of the three branches will be taken at runtime,
we don’t know which of a_1, a_2 or a_3 to use at the return statement. So, the SSA
renamer creates a new version a_4 which is assigned the result of “merging” a_1, a_2 and
a_3. Hence, PHI nodes mean “one of these operands. I don’t know which”.

The following functions can be used to examine PHI nodes

gimple_phi_result (phi) [Function]
Returns the SSA_NAME created by PHI node phi (i.e., phi’s LHS).

gimple_phi_num_args (phi) [Function]
Returns the number of arguments in phi. This number is exactly the number of
incoming edges to the basic block holding phi.

gimple_phi_arg (phi, i) [Function]
Returns ith argument of phi.

gimple_phi_arg_edge (phi, i) [Function]
Returns the incoming edge for the ith argument of phi.

gimple_phi_arg_def (phi, i) [Function]
Returns the SSA_NAME for the ith argument of phi.

13.3.1 Preserving the SSA form

Some optimization passes make changes to the function that invalidate the SSA property.
This can happen when a pass has added new symbols or changed the program so that vari-
ables that were previously aliased aren’t anymore. Whenever something like this happens,



254 GNU Compiler Collection (GCC) Internals

the affected symbols must be renamed into SSA form again. Transformations that emit
new code or replicate existing statements will also need to update the SSA form.

Since GCC implements two different SSA forms for register and virtual variables, keeping
the SSA form up to date depends on whether you are updating register or virtual names.
In both cases, the general idea behind incremental SSA updates is similar: when new SSA
names are created, they typically are meant to replace other existing names in the program.

For instance, given the following code:

1 LO:
x_1 = PHI (0, x_5)
if (x_1 < 10)
if (x_1 > 7)
y_2 =0
else
y_3 =x_1+ x_7
endif
9 x_6=x_1+1
10 goto LO;
11 endif

00 ~NOoO Ok WN

Suppose that we insert new names x_10 and x_11 (lines 4 and 8).

1 LO:

2 x_1 = PHI (0, x_5)
3 if (x_1 < 10)

4 x_10 = ...

5 if (x_1>7)

6 y_2 =0

7 else

8 x_11 = ...

9 y_3 =x_1 + x_7
10 endif

11 xb=x_1+1

12 goto LO;

13 endif

We want to replace all the uses of x_1 with the new definitions of x_10 and x_11. Note
that the only uses that should be replaced are those at lines 5, 9 and 11. Also, the use of x_7
at line 9 should not be replaced (this is why we cannot just mark symbol x for renaming).

Additionally, we may need to insert a PHI node at line 11 because that is a merge point
for x_10 and x_11. So the use of x_1 at line 11 will be replaced with the new PHI node.
The insertion of PHI nodes is optional. They are not strictly necessary to preserve the
SSA form, and depending on what the caller inserted, they may not even be useful for the
optimizers.

Updating the SSA form is a two step process. First, the pass has to identify which
names need to be updated and/or which symbols need to be renamed into SSA form for
the first time. When new names are introduced to replace existing names in the program,
the mapping between the old and the new names are registered by calling register_new_
name_mapping (note that if your pass creates new code by duplicating basic blocks, the call
to tree_duplicate_bb will set up the necessary mappings automatically).

After the replacement mappings have been registered and new symbols marked for re-
naming, a call to update_ssa makes the registered changes. This can be done with an
explicit call or by creating TODO flags in the tree_opt_pass structure for your pass. There
are several TODO flags that control the behavior of update_ssa:



Chapter 13: Analysis and Optimization of GIMPLE tuples 255

e TODO_update_ssa. Update the SSA form inserting PHI nodes for newly exposed sym-
bols and virtual names marked for updating. When updating real names, only insert
PHI nodes for a real name 0_j in blocks reached by all the new and old definitions for
0_j. If the iterated dominance frontier for 0_j is not pruned, we may end up inserting
PHI nodes in blocks that have one or more edges with no incoming definition for 0_j.
This would lead to uninitialized warnings for 0_j’s symbol.

e TODO_update_ssa_no_phi. Update the SSA form without inserting any new PHI nodes
at all. This is used by passes that have either inserted all the PHI nodes themselves or
passes that need only to patch use-def and def-def chains for virtuals (e.g., DCE).

e TODO_update_ssa_full_phi. Insert PHI nodes everywhere they are needed. No prun-
ing of the IDF is done. This is used by passes that need the PHI nodes for 0_j even
if it means that some arguments will come from the default definition of 0_j’s symbol
(e.g., pass_linear_transform).

WARNING: If you need to use this flag, chances are that your pass may be doing
something wrong. Inserting PHI nodes for an old name where not all edges carry a
new replacement may lead to silent codegen errors or spurious uninitialized warnings.

e TODO_update_ssa_only_virtuals. Passes that update the SSA form on their own
may want to delegate the updating of virtual names to the generic updater. Since
FUD chains are easier to maintain, this simplifies the work they need to do. NOTE:
If this flag is used, any OLD->NEW mappings for real names are explicitly destroyed
and only the symbols marked for renaming are processed.

13.3.2 Examining SSA_NAME nodes

The following macros can be used to examine SSA_NAME nodes

SSA_NAME_DEF_STMT (var) [Macro]
Returns the statement s that creates the SSA_NAME var. If s is an empty statement
(i.e., IS_EMPTY_STMT (s) returns true), it means that the first reference to this vari-
able is a USE or a VUSE.

SSA_NAME_VERSION (var) [Macro]
Returns the version number of the SSA_NAME object var.

13.3.3 Walking the dominator tree

void walk_dominator_tree (walk_data, bb) [Tree SSA function]
This function walks the dominator tree for the current CFG calling a set of callback
functions defined in struct dom_walk_data in ‘domwalk.h’. The call back functions
you need to define give you hooks to execute custom code at various points during
traversal:

1. Once to initialize any local data needed while processing bb and its children.
This local data is pushed into an internal stack which is automatically pushed
and popped as the walker traverses the dominator tree.

2. Once before traversing all the statements in the bb.
3. Once for every statement inside bb.

4. Once after traversing all the statements and before recursing into bb’s dominator
children.



256

GNU Compiler Collection (GCC) Internals

5. It then recurses into all the dominator children of bb.

6. After recursing into all the dominator children of bb it can, optionally, traverse
every statement in bb again (i.e., repeating steps 2 and 3).

7. Once after walking the statements in bb and bb’s dominator children. At this
stage, the block local data stack is popped.

13.4 Alias analysis

Alias analysis in GIMPLE SSA form consists of two pieces. First the virtual SSA web

ties

conflicting memory accesses and provides a SSA use-def chain and SSA immediate-

use chains for walking possibly dependent memory accesses. Second an alias-oracle can be
queried to disambiguate explicit and implicit memory references.

1.

Memory SSA form.

All statements that may use memory have exactly one accompanied use of a virtual
SSA name that represents the state of memory at the given point in the IL.

All statements that may define memory have exactly one accompanied definition of a
virtual SSA name using the previous state of memory and defining the new state of
memory after the given point in the IL.

int i;
int foo (void)
{
# .MEM_3 = VDEF <.MEM_2(D)>
i=1;
# VUSE <.MEM_3>
return i;
}

The virtual SSA names in this case are .MEM_2(D) and .MEM_3. The store to the global
variable i defines .MEM_3 invalidating .MEM_2(D). The load from i uses that new state
.MEM_3.

The virtual SSA web serves as constraints to SSA optimizers preventing illegitimate
code-motion and optimization. It also provides a way to walk related memory state-
ments.
Points-to and escape analysis.
Points-to analysis builds a set of constraints from the GIMPLE SSA IL representing
all pointer operations and facts we do or do not know about pointers. Solving this
set of constraints yields a conservatively correct solution for each pointer variable in
the program (though we are only interested in SSA name pointers) as to what it may
possibly point to.
This points-to solution for a given SSA name pointer is stored in the pt_solution
sub-structure of the SSA_NAME_PTR_INFO record. The following accessor functions are
available:

e pt_solution_includes

e pt_solutions_intersect
Points-to analysis also computes the solution for two special set of pointers, ESCAPED

and CALLUSED. Those represent all memory that has escaped the scope of analysis or
that is used by pure or nested const calls.



Chapter 13: Analysis and Optimization of GIMPLE tuples 257

3. Type-based alias analysis

Type-based alias analysis is frontend dependent though generic support is provided
by the middle-end in alias.c. TBAA code is used by both tree optimizers and RTL
optimizers.

Every language that wishes to perform language-specific alias analysis should define a
function that computes, given a tree node, an alias set for the node. Nodes in different
alias sets are not allowed to alias. For an example, see the C front-end function c_get_
alias_set.

4. Tree alias-oracle

The tree alias-oracle provides means to disambiguate two memory references and mem-
ory references against statements. The following queries are available:

e refs_may_alias_p
e ref maybe_used_by_stmt_p

e stmt_may_clobber_ref_ p

In addition to those two kind of statement walkers are available walking statements
related to a reference ref. walk_non_aliased_vuses walks over dominating memory
defining statements and calls back if the statement does not clobber ref providing the
non-aliased VUSE. The walk stops at the first clobbering statement or if asked to.
walk_aliased_vdefs walks over dominating memory defining statements and calls
back on each statement clobbering ref providing its aliasing VDEF. The walk stops if
asked to.

13.5 Memory model

The memory model used by the middle-end models that of the C/C++ languages. The
middle-end has the notion of an effective type of a memory region which is used for type-
based alias analysis.

The following is a refinement of ISO C99 6.5/6, clarifying the block copy case to follow
common sense and extending the concept of a dynamic effective type to objects with a
declared type as required for C++.

The effective type of an object for an access to its stored value is
the declared type of the object or the effective type determined by

a previous store to it. If a value is stored into an object through
an lvalue having a type that is not a character type, then the

type of the lvalue becomes the effective type of the object for that
access and for subsequent accesses that do not modify the stored value.
If a value is copied into an object using memcpy or memmove,

or is copied as an array of character type, then the effective type

of the modified object for that access and for subsequent accesses that
do not modify the value is undetermined. For all other accesses to an
object, the effective type of the object is simply the type of the
lvalue used for the access.






Chapter 14: RTL Representation 259

14 RTL Representation

The last part of the compiler work is done on a low-level intermediate representation called
Register Transfer Language. In this language, the instructions to be output are described,
pretty much one by one, in an algebraic form that describes what the instruction does.

RTL is inspired by Lisp lists. It has both an internal form, made up of structures that
point at other structures, and a textual form that is used in the machine description and
in printed debugging dumps. The textual form uses nested parentheses to indicate the
pointers in the internal form.

14.1 RTL Object Types

RTL uses five kinds of objects: expressions, integers, wide integers, strings and vectors.
Expressions are the most important ones. An RTL expression (“RTX”, for short) is a C
structure, but it is usually referred to with a pointer; a type that is given the typedef name
rtx.

An integer is simply an int; their written form uses decimal digits. A wide integer is an
integral object whose type is HOST_WIDE_INT; their written form uses decimal digits.

A string is a sequence of characters. In core it is represented as a char * in usual C
fashion, and it is written in C syntax as well. However, strings in RTL may never be null.
If you write an empty string in a machine description, it is represented in core as a null
pointer rather than as a pointer to a null character. In certain contexts, these null pointers
instead of strings are valid. Within RTL code, strings are most commonly found inside
symbol_ref expressions, but they appear in other contexts in the RTL expressions that
make up machine descriptions.

In a machine description, strings are normally written with double quotes, as you would
in C. However, strings in machine descriptions may extend over many lines, which is invalid
C, and adjacent string constants are not concatenated as they are in C. Any string constant
may be surrounded with a single set of parentheses. Sometimes this makes the machine
description easier to read.

There is also a special syntax for strings, which can be useful when C code is embedded
in a machine description. Wherever a string can appear, it is also valid to write a C-style
brace block. The entire brace block, including the outermost pair of braces, is considered to
be the string constant. Double quote characters inside the braces are not special. Therefore,
if you write string constants in the C code, you need not escape each quote character with
a backslash.

A vector contains an arbitrary number of pointers to expressions. The number of elements
in the vector is explicitly present in the vector. The written form of a vector consists
of square brackets (‘[...]") surrounding the elements, in sequence and with whitespace
separating them. Vectors of length zero are not created; null pointers are used instead.

Expressions are classified by expression codes (also called RTX codes). The expression
code is a name defined in ‘rtl.def’, which is also (in uppercase) a C enumeration constant.
The possible expression codes and their meanings are machine-independent. The code of
an RTX can be extracted with the macro GET_CODE (x) and altered with PUT_CODE (x,
newcode).



260 GNU Compiler Collection (GCC) Internals

The expression code determines how many operands the expression contains, and what
kinds of objects they are. In RTL, unlike Lisp, you cannot tell by looking at an operand
what kind of object it is. Instead, you must know from its context—from the expression
code of the containing expression. For example, in an expression of code subreg, the first
operand is to be regarded as an expression and the second operand as a polynomial integer.
In an expression of code plus, there are two operands, both of which are to be regarded as
expressions. In a symbol_ref expression, there is one operand, which is to be regarded as
a string.

Expressions are written as parentheses containing the name of the expression type, its
flags and machine mode if any, and then the operands of the expression (separated by
spaces).

Expression code names in the ‘md’ file are written in lowercase, but when they appear in C
code they are written in uppercase. In this manual, they are shown as follows: const_int.

In a few contexts a null pointer is valid where an expression is normally wanted. The
written form of this is (nil).

14.2 RTL Classes and Formats

The various expression codes are divided into several classes, which are represented by single
characters. You can determine the class of an RTX code with the macro GET_RTX_CLASS
(code). Currently, ‘rtl.def’ defines these classes:

RTX_0BJ  An RTX code that represents an actual object, such as a register (REG) or a
memory location (MEM, SYMBOL_REF). LO_SUM) is also included; instead, SUBREG
and STRICT_LOW_PART are not in this class, but in class RTX_EXTRA.

RTX_CONST_0BJ
An RTX code that represents a constant object. HIGH is also included in this
class.

RTX_COMPARE
An RTX code for a non-symmetric comparison, such as GEU or LT.

RTX_COMM_COMPARE
An RTX code for a symmetric (commutative) comparison, such as EQ or
ORDERED.

RTX_UNARY
An RTX code for a unary arithmetic operation, such as NEG, NOT, or ABS. This
category also includes value extension (sign or zero) and conversions between
integer and floating point.

RTX_COMM_ARITH
An RTX code for a commutative binary operation, such as PLUS or AND. NE
and EQ are comparisons, so they have class RTX_COMM_COMPARE.

RTX_BIN_ARITH
An RTX code for a non-commutative binary operation, such as MINUS, DIV, or
ASHTIFTRT.



Chapter 14: RTL Representation 261

RTX_BITFIELD_QOPS
An RTX code for a bit-field operation. Currently only ZERO_EXTRACT and
SIGN_EXTRACT. These have three inputs and are lvalues (so they can be used
for insertion as well). See Section 14.11 [Bit-Fields], page 294.

RTX_TERNARY
An RTX code for other three input operations. Currently only IF_THEN_ELSE,
VEC_MERGE, SIGN_EXTRACT, ZERO_EXTRACT, and FMA.

RTX_INSN An RTX code for an entire instruction: INSN, JUMP_INSN, and CALL_INSN. See
Section 14.19 [Insns|, page 304.

RTX_MATCH
An RTX code for something that matches in insns, such as MATCH_DUP. These
only occur in machine descriptions.

RTX_AUTOINC
An RTX code for an auto-increment addressing mode, such as POST_INC. ‘XEXP
(x, 0)’ gives the auto-modified register.

RTX_EXTRA
All other RTX codes. This category includes the remaining codes used only in
machine descriptions (DEFINE_x, etc.). It also includes all the codes describing
side effects (SET, USE, CLOBBER, etc.) and the non-insns that may appear on
an insn chain, such as NOTE, BARRIER, and CODE_LABEL. SUBREG is also part of
this class.

For each expression code, ‘rtl.def’ specifies the number of contained objects and their
kinds using a sequence of characters called the format of the expression code. For example,
the format of subreg is ‘ep’.

These are the most commonly used format characters:

e An expression (actually a pointer to an expression).
i An integer.

W A wide integer.

s A string.

E A vector of expressions.

A few other format characters are used occasionally:

u ‘u’ is equivalent to ‘e’ except that it is printed differently in debugging dumps.
It is used for pointers to insns.

n ‘n’ is equivalent to ‘i’ except that it is printed differently in debugging dumps.
It is used for the line number or code number of a note insn.

S ‘S’ indicates a string which is optional. In the RTL objects in core, ‘S’ is
equivalent to ‘s’, but when the object is read, from an ‘md’ file, the string value
of this operand may be omitted. An omitted string is taken to be the null
string.



262 GNU Compiler Collection (GCC) Internals

\ ‘V’ indicates a vector which is optional. In the RTL objects in core, ‘V’ is
equivalent to ‘E’, but when the object is read from an ‘md’ file, the vector value
of this operand may be omitted. An omitted vector is effectively the same as a
vector of no elements.

B ‘B’ indicates a pointer to basic block structure.
A polynomial integer. At present this is used only for SUBREG_BYTE.

0 ‘0’ means a slot whose contents do not fit any normal category. ‘0’ slots are
not printed at all in dumps, and are often used in special ways by small parts
of the compiler.

There are macros to get the number of operands and the format of an expression code:

GET_RTX_LENGTH (code)
Number of operands of an RTX of code code.

GET_RTX_FORMAT (code)
The format of an RTX of code code, as a C string.

Some classes of RTX codes always have the same format. For example, it is safe to assume
that all comparison operations have format ee.

RTX_UNARY
All codes of this class have format e.

RTX_BIN_ARITH
RTX_COMM_ARITH
RTX_COMM_COMPARE
RTX_COMPARE
All codes of these classes have format ee.

RTX_BITFIELD_OPS
RTX_TERNARY
All codes of these classes have format eee.

RTX_INSN All codes of this class have formats that begin with iuueiee. See Section 14.19
[Insns|, page 304. Note that not all RTL objects linked onto an insn chain are
of class RTX_INSN.

RTX_CONST_0OBJ
RTX_0BJ
RTX_MATCH
RTX_EXTRA
You can make no assumptions about the format of these codes.

14.3 Access to Operands

Operands of expressions are accessed using the macros XEXP, XINT, XWINT and XSTR. Each
of these macros takes two arguments: an expression-pointer (RTX) and an operand number
(counting from zero). Thus,

XEXP (x, 2)

accesses operand 2 of expression x, as an expression.



Chapter 14: RTL Representation 263

XINT (x, 2)

accesses the same operand as an integer. XSTR, used in the same fashion, would access it as
a string.

Any operand can be accessed as an integer, as an expression or as a string. You must
choose the correct method of access for the kind of value actually stored in the operand.
You would do this based on the expression code of the containing expression. That is also
how you would know how many operands there are.

For example, if x is an int_list expression, you know that it has two operands which
can be correctly accessed as XINT (x, 0) and XEXP (x, 1). Incorrect accesses like XEXP
(x, 0) and XINT (x, 1) would compile, but would trigger an internal compiler error when
rtl checking is enabled. Nothing stops you from writing XEXP (x, 28) either, but this will
access memory past the end of the expression with unpredictable results.

Access to operands which are vectors is more complicated. You can use the macro XVEC
to get the vector-pointer itself, or the macros XVECEXP and XVECLEN to access the elements
and length of a vector.

XVEC (exp, idx)
Access the vector-pointer which is operand number idx in exp.

XVECLEN (exp, idx)
Access the length (number of elements) in the vector which is in operand number
idx in exp. This value is an int.

XVECEXP (exp, idx, eltnum)
Access element number eltnum in the vector which is in operand number idx
in exp. This value is an RTX.

It is up to you to make sure that eltnum is not negative and is less than XVECLEN
(exp, idx).

All the macros defined in this section expand into lvalues and therefore can be used to
assign the operands, lengths and vector elements as well as to access them.

14.4 Access to Special Operands
Some RTL nodes have special annotations associated with them.
MEM

MEM_ALIAS_SET (x)

If 0, x is not in any alias set, and may alias anything. Otherwise,
x can only alias MEMs in a conflicting alias set. This value is set in
a language-dependent manner in the front-end, and should not be
altered in the back-end. In some front-ends, these numbers may
correspond in some way to types, or other language-level entities,
but they need not, and the back-end makes no such assumptions.
These set numbers are tested with alias_sets_conflict_p.

MEM_EXPR (x)
If this register is known to hold the value of some user-level dec-
laration, this is that tree node. It may also be a COMPONENT_REF,



264

REG

SYMBOL_REF

GNU Compiler Collection (GCC) Internals

in which case this is some field reference, and TREE_OPERAND (x,
0) contains the declaration, or another COMPONENT_REF, or null if
there is no compile-time object associated with the reference.

MEM_OFFSET_KNOWN_P (x)
True if the offset of the memory reference from MEM_EXPR is known.
‘MEM_OFFSET (x)’ provides the offset if so.

MEM_OFFSET (x)
The offset from the start of MEM_EXPR. The value is only valid if
‘MEM_OFFSET_KNOWN_P (x)’ is true.

MEM_SIZE_KNOWN_P (x)
True if the size of the memory reference is known. ‘MEM_SIZE (x)’
provides its size if so.

MEM_SIZE (x)
The size in bytes of the memory reference. This is mostly relevant
for BLKmode references as otherwise the size is implied by the mode.
The value is only valid if ‘MEM_SIZE_KNOWN_P (x)’ is true.

MEM_ALIGN (x)
The known alignment in bits of the memory reference.

MEM_ADDR_SPACE (x)
The address space of the memory reference. This will commonly
be zero for the generic address space.

ORIGINAL_REGNO (x)
This field holds the number the register “originally” had; for a
pseudo register turned into a hard reg this will hold the old pseudo
register number.

REG_EXPR (x)
If this register is known to hold the value of some user-level decla-
ration, this is that tree node.

REG_OFFSET (x)
If this register is known to hold the value of some user-level decla-
ration, this is the offset into that logical storage.

SYMBOL_REF_DECL (x)

If the symbol_ref x was created for a VAR_DECL or a FUNCTION_
DECL, that tree is recorded here. If this value is null, then x was
created by back end code generation routines, and there is no as-
sociated front end symbol table entry.

SYMBOL_REF_DECL may also point to a tree of class ’c’, that is,
some sort of constant. In this case, the symbol_ref is an entry in
the per-file constant pool; again, there is no associated front end
symbol table entry.



Chapter 14: RTL Representation 265

SYMBOL_REF_CONSTANT (x)
If ‘CONSTANT_POOL_ADDRESS_P (x)’is true, thisis the constant pool
entry for x. It is null otherwise.

SYMBOL_REF_DATA (x)
A field of opaque type used to store SYMBOL_REF_DECL or SYMBOL_
REF_CONSTANT.

SYMBOL_REF_FLAGS (x)
In a symbol_ref, this is used to communicate various predicates
about the symbol. Some of these are common enough to be com-
puted by common code, some are specific to the target. The com-
mon bits are:

SYMBOL_FLAG_FUNCTION
Set if the symbol refers to a function.

SYMBOL_FLAG_LOCAL
Set if the symbol is local to this “module”. See TARGET_
BINDS_LOCAL_P.

SYMBOL_FLAG_EXTERNAL
Set if this symbol is not defined in this translation
unit. Note that this is not the inverse of SYMBOL_FLAG_
LOCAL.

SYMBOL_FLAG_SMALL
Set if the symbol is located in the small data section.
See TARGET _IN_SMALL_DATA_P.

SYMBOL_REF_TLS_MODEL (x)
This is a multi-bit field accessor that returns the tls_
model to be used for a thread-local storage symbol. It
returns zero for non-thread-local symbols.

SYMBOL_FLAG_HAS_BLOCK_INFO
Set if the symbol has SYMBOL_REF_BLOCK and SYMBOL_
REF_BLOCK_OFFSET fields.

SYMBOL_FLAG_ANCHOR

Set if the symbol is used as a section anchor. “Sec-
tion anchors” are symbols that have a known position
within an object_block and that can be used to ac-
cess nearby members of that block. They are used to
implement ‘-fsection-anchors’.

If this flag is set, then SYMBOL_FLAG_HAS_BLOCK_INFO
will be too.

Bits beginning with SYMBOL_FLAG_MACH_DEP are available for the
target’s use.
SYMBOL_REF_BLOCK (x)
If ‘SYMBOL_REF_HAS_BLOCK_INFO_P (x)’, this is the ‘object_block’ structure
to which the symbol belongs, or NULL if it has not been assigned a block.



266 GNU Compiler Collection (GCC) Internals

SYMBOL_REF_BLOCK_OFFSET (x)
If ‘SYMBOL_REF_HAS_BLOCK_INFO_P (x)’, this is the offset of x from the first
object in ‘SYMBOL_REF_BLOCK (x)’. The value is negative if x has not yet been
assigned to a block, or it has not been given an offset within that block.

14.5 Flags in an RTL Expression

RTL expressions contain several flags (one-bit bit-fields) that are used in certain types of
expression. Most often they are accessed with the following macros, which expand into
lvalues.

CROSSING_JUMP_P (x)
Nonzero in a jump_insn if it crosses between hot and cold sections, which
could potentially be very far apart in the executable. The presence of this flag
indicates to other optimizations that this branching instruction should not be
“collapsed” into a simpler branching construct. It is used when the optimization
to partition basic blocks into hot and cold sections is turned on.

CONSTANT_POOL_ADDRESS_P (x)
Nongzero in a symbol_ref if it refers to part of the current function’s constant
pool. For most targets these addresses are in a .rodata section entirely separate
from the function, but for some targets the addresses are close to the beginning
of the function. In either case GCC assumes these addresses can be addressed
directly, perhaps with the help of base registers. Stored in the unchanging field
and printed as ‘/u’.

INSN_ANNULLED_BRANCH_P (x)
In a jump_insn, call_insn, or insn indicates that the branch is an annulling
one. See the discussion under sequence below. Stored in the unchanging field
and printed as ‘/u’.

INSN_DELETED_P (x)
In an insn, call_insn, jump_insn, code_label, jump_table_data, barrier,
or note, nonzero if the insn has been deleted. Stored in the volatil field and
printed as ‘/v’.

INSN_FROM_TARGET_P (x)
In an insn or jump_insn or call_insn in a delay slot of a branch, indicates that
the insn is from the target of the branch. If the branch insn has INSN_ANNULLED_
BRANCH_P set, this insn will only be executed if the branch is taken. For annulled
branches with INSN_FROM_TARGET_P clear, the insn will be executed only if the
branch is not taken. When INSN_ANNULLED_BRANCH_P is not set, this insn will
always be executed. Stored in the in_struct field and printed as ‘/s’.

LABEL_PRESERVE_P (x)
In a code_label or note, indicates that the label is referenced by code or data
not visible to the RTL of a given function. Labels referenced by a non-local
goto will have this bit set. Stored in the in_struct field and printed as ‘/s’.

LABEL_REF_NONLOCAL_P (x)
In label_ref and reg_label expressions, nonzero if this is a reference to a
non-local label. Stored in the volatil field and printed as ‘/v’.



Chapter 14: RTL Representation 267

MEM_KEEP_ALIAS_SET_P (x)
In mem expressions, 1 if we should keep the alias set for this mem unchanged
when we access a component. Set to 1, for example, when we are already in
a non-addressable component of an aggregate. Stored in the jump field and
printed as ‘/j’.

MEM_VOLATILE_P (x)
In mem, asm_operands, and asm_input expressions, nonzero for volatile memory
references. Stored in the volatil field and printed as ‘/v’.

MEM_NOTRAP_P (x)
In mem, nonzero for memory references that will not trap. Stored in the call
field and printed as ‘/c’.

MEM_POINTER (x)
Nonzero in a mem if the memory reference holds a pointer. Stored in the frame_
related field and printed as ‘/f’.

MEM_READONLY_P (x)
Nonzero in a mem, if the memory is statically allocated and read-only.

Read-only in this context means never modified during the lifetime of the pro-
gram, not necessarily in ROM or in write-disabled pages. A common example
of the later is a shared library’s global offset table. This table is initialized by
the runtime loader, so the memory is technically writable, but after control is
transferred from the runtime loader to the application, this memory will never
be subsequently modified.

Stored in the unchanging field and printed as ‘/u’.

PREFETCH_SCHEDULE_BARRIER_P (x)
In a prefetch, indicates that the prefetch is a scheduling barrier. No other
INSNs will be moved over it. Stored in the volatil field and printed as ‘/v’.

REG_FUNCTION_VALUE_P (x)
Nonzero in a reg if it is the place in which this function’s value is going to be
returned. (This happens only in a hard register.) Stored in the return_val
field and printed as ‘/1i’.

REG_POINTER (x)
Nongzero in a reg if the register holds a pointer. Stored in the frame_related
field and printed as ‘/f’.

REG_USERVAR_P (x)
In a reg, nonzero if it corresponds to a variable present in the user’s source
code. Zero for temporaries generated internally by the compiler. Stored in the
volatil field and printed as ‘/v’.

The same hard register may be used also for collecting the values of functions
called by this one, but REG_FUNCTION_VALUE_P is zero in this kind of use.

RTL_CONST_CALL_P (x)
In a call_insn indicates that the insn represents a call to a const function.
Stored in the unchanging field and printed as ‘/u’.



268

GNU Compiler Collection (GCC) Internals

RTL_PURE_CALL_P (x)

In a call_insn indicates that the insn represents a call to a pure function.
Stored in the return_val field and printed as ‘/i’.

RTL_CONST_OR_PURE_CALL_P (x)

In a call_insn, true if RTL_CONST_CALL_P or RTL_PURE_CALL_P is true.

RTL_LOOPING_CONST_OR_PURE_CALL_P (x)

In a call_insn indicates that the insn represents a possibly infinite looping
call to a const or pure function. Stored in the call field and printed as ‘/c’.
Only true if one of RTL_CONST_CALL_P or RTL_PURE_CALL_P is true.

RTX_FRAME_RELATED_P (x)

Nongzero in an insn, call_insn, jump_insn, barrier, or set which is part of a
function prologue and sets the stack pointer, sets the frame pointer, or saves a
register. This flag should also be set on an instruction that sets up a temporary
register to use in place of the frame pointer. Stored in the frame_related field
and printed as ‘/f’.

In particular, on RISC targets where there are limits on the sizes of immediate
constants, it is sometimes impossible to reach the register save area directly from
the stack pointer. In that case, a temporary register is used that is near enough
to the register save area, and the Canonical Frame Address, i.e., DWARF2’s
logical frame pointer, register must (temporarily) be changed to be this tem-
porary register. So, the instruction that sets this temporary register must be
marked as RTX_FRAME_RELATED_P.

If the marked instruction is overly complex (defined in terms of what
dwarf2out_frame_debug_expr can handle), you will also have to create a
REG_FRAME_RELATED_EXPR note and attach it to the instruction. This note
should contain a simple expression of the computation performed by this
instruction, i.e., one that dwarf2out_frame_debug_expr can handle.

This flag is required for exception handling support on targets with RTL pro-
logues.

SCHED_GROUP_P (x)

During instruction scheduling, in an insn, call_insn, jump_insn or jump_
table_data, indicates that the previous insn must be scheduled together with
this insn. This is used to ensure that certain groups of instructions will not
be split up by the instruction scheduling pass, for example, use insns before a
call_insn may not be separated from the call_insn. Stored in the in_struct
field and printed as ‘/s’.

SET_IS_RETURN_P (x)

For a set, nonzero if it is for a return. Stored in the jump field and printed as

(/j7'

SIBLING_CALL_P (x)

For a call_insn, nonzero if the insn is a sibling call. Stored in the jump field
and printed as ‘/j’.



Chapter 14: RTL Representation 269

STRING_POOL_ADDRESS_P (x)

For a symbol_ref expression, nonzero if it addresses this function’s string con-
stant pool. Stored in the frame_related field and printed as ‘/f’.

SUBREG_PROMOTED_UNSIGNED_P (x)

Returns a value greater then zero for a subreg that has SUBREG_PROMOTED_
VAR_P nongzero if the object being referenced is kept zero-extended, zero if it
is kept sign-extended, and less then zero if it is extended some other way via
the ptr_extend instruction. Stored in the unchanging field and volatil field,
printed as ‘/u’ and ‘/v’. This macro may only be used to get the value it
may not be used to change the value. Use SUBREG_PROMOTED_UNSIGNED_SET to
change the value.

SUBREG_PROMOTED_UNSIGNED_SET (x)

Set the unchanging and volatil fields in a subreg to reflect zero, sign, or
other extension. If volatil is zero, then unchanging as nonzero means zero
extension and as zero means sign extension. If volatil is nonzero then some
other type of extension was done via the ptr_extend instruction.

SUBREG_PROMOTED_VAR_P (x)

Nongzero in a subreg if it was made when accessing an object that was promoted
to a wider mode in accord with the PROMOTED_MODE machine description macro
(see Section 18.5 [Storage Layout], page 490). In this case, the mode of the
subreg is the declared mode of the object and the mode of SUBREG_REG is the
mode of the register that holds the object. Promoted variables are always either
sign- or zero-extended to the wider mode on every assignment. Stored in the
in_struct field and printed as ‘/s’.

SYMBOL_REF_USED (x)

In a symbol_ref, indicates that x has been used. This is normally only used
to ensure that x is only declared external once. Stored in the used field.

SYMBOL_REF_WEAK (x)

In a symbol_ref, indicates that x has been declared weak. Stored in the
return_val field and printed as ‘/1i’.

SYMBOL_REF_FLAG (x)

In a symbol_ref, this is used as a flag for machine-specific purposes. Stored in
the volatil field and printed as ‘/v’.

Most uses of SYMBOL_REF_FLAG are historic and may be subsumed by SYMBOL_
REF_FLAGS. Certainly use of SYMBOL_REF_FLAGS is mandatory if the target
requires more than one bit of storage.

These are the fields to which the above macros refer:

call

In a mem, 1 means that the memory reference will not trap.
In a call, 1 means that this pure or const call may possibly infinite loop.

In an RTL dump, this flag is represented as ‘/c’.



270

frame_rela

in_struct

return_val

Jjump

unchanging

GNU Compiler Collection (GCC) Internals

ted

In an insn or set expression, 1 means that it is part of a function prologue
and sets the stack pointer, sets the frame pointer, saves a register, or sets up a
temporary register to use in place of the frame pointer.

In reg expressions, 1 means that the register holds a pointer.
In mem expressions, 1 means that the memory reference holds a pointer.

In symbol_ref expressions, 1 means that the reference addresses this function’s
string constant pool.

In an RTL dump, this flag is represented as ‘/f’.

In reg expressions, it is 1 if the register has its entire life contained within the
test expression of some loop.

In subreg expressions, 1 means that the subreg is accessing an object that has
had its mode promoted from a wider mode.

In label_ref expressions, 1 means that the referenced label is outside the
innermost loop containing the insn in which the label_ref was found.

In code_label expressions, it is 1 if the label may never be deleted. This is
used for labels which are the target of non-local gotos. Such a label that would
have been deleted is replaced with a note of type NOTE_INSN_DELETED_LABEL.

In an insn during dead-code elimination, 1 means that the insn is dead code.

In an insn or jump_insn during reorg for an insn in the delay slot of a branch,
1 means that this insn is from the target of the branch.

In an insn during instruction scheduling, 1 means that this insn must be sched-
uled as part of a group together with the previous insn.

In an RTL dump, this flag is represented as ‘/s’.

In reg expressions, 1 means the register contains the value to be returned by
the current function. On machines that pass parameters in registers, the same
register number may be used for parameters as well, but this flag is not set on
such uses.

In symbol_ref expressions, 1 means the referenced symbol is weak.

In call expressions, 1 means the call is pure.

In an RTL dump, this flag is represented as ‘/i’.

In a mem expression, 1 means we should keep the alias set for this mem un-
changed when we access a component.

In a set, 1 means it is for a return.

In a call_insn, 1 means it is a sibling call.

In a jump_insn, 1 means it is a crossing jump.

In an RTL dump, this flag is represented as ‘/j’.

In reg and mem expressions, 1 means that the value of the expression never
changes.



Chapter 14: RTL Representation 271

used

volatil

In subreg expressions, it is 1 if the subreg references an unsigned object whose
mode has been promoted to a wider mode.

In an insn or jump_insn in the delay slot of a branch instruction, 1 means an
annulling branch should be used.

In a symbol_ref expression, 1 means that this symbol addresses something in
the per-function constant pool.

In a call_insn 1 means that this instruction is a call to a const function.

In an RTL dump, this flag is represented as ‘/u’.

This flag is used directly (without an access macro) at the end of RTL generation
for a function, to count the number of times an expression appears in insns.

Expressions that appear more than once are copied, according to the rules for
shared structure (see Section 14.21 [Sharing], page 314).

For a reg, it is used directly (without an access macro) by the leaf register
renumbering code to ensure that each register is only renumbered once.

In a symbol_ref, it indicates that an external declaration for the symbol has
already been written.

In a mem, asm_operands, or asm_input expression, it is 1 if the memory refer-
ence is volatile. Volatile memory references may not be deleted, reordered or
combined.

In a symbol_ref expression, it is used for machine-specific purposes.

In a reg expression, it is 1 if the value is a user-level variable. 0 indicates an
internal compiler temporary.

In an insn, 1 means the insn has been deleted.

In label_ref and reg_label expressions, 1 means a reference to a non-local

label.

In prefetch expressions, 1 means that the containing insn is a scheduling bar-
rier.

In an RTL dump, this flag is represented as ‘/v’.

14.6 Machine Modes

A machine mode describes a size of data object and the representation used for it. In the
C code, machine modes are represented by an enumeration type, machine_mode, defined
in ‘machmode.def’. Each RTL expression has room for a machine mode and so do certain
kinds of tree expressions (declarations and types, to be precise).

In debugging dumps and machine descriptions, the machine mode of an RTL expression
is written after the expression code with a colon to separate them. The letters ‘mode’ which
appear at the end of each machine mode name are omitted. For example, (reg:SI 38) is
a reg expression with machine mode SImode. If the mode is VOIDmode, it is not written at

all.

Here is a table of machine modes. The term “byte” below refers to an object of BITS_
PER_UNIT bits (see Section 18.5 [Storage Layout], page 490).

BImode

“Bit” mode represents a single bit, for predicate registers.



272

QImode
HImode
PSImode

SImode
PDImode

DImode
TImode
OImode
XImode
QFmode

HFmode

TQFmode

SFmode

DFmode

XFmode

SDmode

DDmode

TDmode

TFmode

GNU Compiler Collection (GCC) Internals

“Quarter-Integer” mode represents a single byte treated as an integer.
“Half-Integer” mode represents a two-byte integer.

“Partial Single Integer” mode represents an integer which occupies four bytes
but which doesn’t really use all four. On some machines, this is the right mode
to use for pointers.

“Single Integer” mode represents a four-byte integer.

“Partial Double Integer” mode represents an integer which occupies eight bytes
but which doesn’t really use all eight. On some machines, this is the right mode
to use for certain pointers.

“Double Integer” mode represents an eight-byte integer.

“Tetra Integer” (?7) mode represents a sixteen-byte integer.

“Octa Integer” (7) mode represents a thirty-two-byte integer.
“Hexadeca Integer” (7) mode represents a sixty-four-byte integer.

“Quarter-Floating” mode represents a quarter-precision (single byte) floating
point number.

“Half-Floating” mode represents a half-precision (two byte) floating point num-
ber.

“Three-Quarter-Floating” (?) mode represents a three-quarter-precision (three
byte) floating point number.

“Single Floating” mode represents a four byte floating point number. In the
common case, of a processor with IEEE arithmetic and 8-bit bytes, this is a
single-precision IEEE floating point number; it can also be used for double-
precision (on processors with 16-bit bytes) and single-precision VAX and IBM

types.

“Double Floating” mode represents an eight byte floating point number. In the
common case, of a processor with IEEE arithmetic and 8-bit bytes, this is a
double-precision IEEE floating point number.

“Extended Floating” mode represents an IEEE extended floating point number.
This mode only has 80 meaningful bits (ten bytes). Some processors require
such numbers to be padded to twelve bytes, others to sixteen; this mode is used
for either.

“Single Decimal Floating” mode represents a four byte decimal floating point
number (as distinct from conventional binary floating point).

“Double Decimal Floating” mode represents an eight byte decimal floating point
number.

“Tetra Decimal Floating” mode represents a sixteen byte decimal floating point
number all 128 of whose bits are meaningful.

“Tetra Floating” mode represents a sixteen byte floating point number all 128
of whose bits are meaningful. One common use is the IEEE quad-precision
format.



Chapter 14: RTL Representation 273

QQmode

HQmode

SQmode

DQmode

TQmode

UQQmode

UHQmode

USQmode

UDQmode

UTQmode

HAmode

SAmode

DAmode

TAmode

UHAmode

USAmode

UDAmode

UTAmode

CCmode

“Quarter-Fractional” mode represents a single byte treated as a signed frac-
tional number. The default format is “s.7”.

“Half-Fractional” mode represents a two-byte signed fractional number. The
default format is “s.15”.

“Single Fractional” mode represents a four-byte signed fractional number. The
default format is “s.31”.

“Double Fractional” mode represents an eight-byte signed fractional number.
The default format is “s.63”.

“Tetra Fractional” mode represents a sixteen-byte signed fractional number.
The default format is “s.127”.

“Unsigned Quarter-Fractional” mode represents a single byte treated as an
unsigned fractional number. The default format is “.8”.

“Unsigned Half-Fractional” mode represents a two-byte unsigned fractional
number. The default format is “.16”.

“Unsigned Single Fractional” mode represents a four-byte unsigned fractional
number. The default format is “.32”.

“Unsigned Double Fractional” mode represents an eight-byte unsigned frac-
tional number. The default format is “.64”.

“Unsigned Tetra Fractional” mode represents a sixteen-byte unsigned fractional
number. The default format is “.128”.

“Half-Accumulator” mode represents a two-byte signed accumulator. The de-
fault format is “s8.77.

“Single Accumulator” mode represents a four-byte signed accumulator. The
default format is “s16.15”.

“Double Accumulator” mode represents an eight-byte signed accumulator. The
default format is “s32.317.

“Tetra Accumulator” mode represents a sixteen-byte signed accumulator. The
default format is “s64.63”.

“Unsigned Half-Accumulator” mode represents a two-byte unsigned accumula-
tor. The default format is “8.8”.

“Unsigned Single Accumulator” mode represents a four-byte unsigned accumu-
lator. The default format is “16.16”.

“Unsigned Double Accumulator” mode represents an eight-byte unsigned accu-
mulator. The default format is “32.32”.

“Unsigned Tetra Accumulator” mode represents a sixteen-byte unsigned accu-
mulator. The default format is “64.64”.

“Condition Code” mode represents the value of a condition code, which is a
machine-specific set of bits used to represent the result of a comparison oper-
ation. Other machine-specific modes may also be used for the condition code.



274 GNU Compiler Collection (GCC) Internals

These modes are not used on machines that use cc0 (see Section 18.15 [Condi-
tion Code], page 572).

BLKmode “Block” mode represents values that are aggregates to which none of the other
modes apply. In RTL, only memory references can have this mode, and only if
they appear in string-move or vector instructions. On machines which have no
such instructions, BLKmode will not appear in RTL.

V0IDmode Void mode means the absence of a mode or an unspecified mode. For example,
RTL expressions of code const_int have mode VOIDmode because they can be
taken to have whatever mode the context requires. In debugging dumps of
RTL, VOIDmode is expressed by the absence of any mode.

QCmode, HCmode, SCmode, DCmode, XCmode, TCmode
These modes stand for a complex number represented as a pair of floating
point values. The floating point values are in QFmode, HFmode, SFmode, DFmode,
XFmode, and TFmode, respectively.

CQImode, CHImode, CSImode, CDImode, CTImode, COImode, CPSImode
These modes stand for a complex number represented as a pair of integer values.
The integer values are in QImode, HImode, SImode, DImode, TImode, OImode,
and PSImode, respectively.

BND32mode BND64mode
These modes stand for bounds for pointer of 32 and 64 bit size respectively.
Mode size is double pointer mode size.

The machine description defines Pmode as a C macro which expands into the machine
mode used for addresses. Normally this is the mode whose size is BITS_PER_WORD, SImode
on 32-bit machines.

The only modes which a machine description must support are QImode, and the modes
corresponding to BITS_PER_WORD, FLOAT_TYPE_SIZE and DOUBLE_TYPE_SIZE. The compiler
will attempt to use DImode for 8-byte structures and unions, but this can be prevented by
overriding the definition of MAX_FIXED_MODE_SIZE. Alternatively, you can have the compiler
use TImode for 16-byte structures and unions. Likewise, you can arrange for the C type
short int to avoid using HImode.

Very few explicit references to machine modes remain in the compiler and these few
references will soon be removed. Instead, the machine modes are divided into mode classes.
These are represented by the enumeration type enum mode_class defined in ‘machmode.h’.
The possible mode classes are:

MODE_INT Integer modes. By default these are BImode, QImode, HImode, SImode, DImode,
TImode, and OImode.

MODE_PARTIAL_INT
The “partial integer” modes, PQImode, PHImode, PSImode and PDImode.

MODE_FLOAT
Floating point modes. By default these are QFmode, HFmode, TQFmode, SFmode,
DFmode, XFmode and TFmode.

MODE_DECIMAL_FLOAT
Decimal floating point modes. By default these are SDmode, DDmode and TDmode.



Chapter 14: RTL Representation 275

MODE_FRACT
Signed fractional modes. By default these are QQmode, HQmode, SQmode, DQmode
and TQmode.

MODE_UFRACT
Unsigned fractional modes. By default these are UQQmode, UHQmode, USQmode,
UDQmode and UTQmode.

MODE_ACCUM
Signed accumulator modes. By default these are HAmode, SAmode, DAmode and
TAmode.

MODE_UACCUM
Unsigned accumulator modes. By default these are UHAmode, USAmode, UDAmode
and UTAmode.

MODE_COMPLEX_INT
Complex integer modes. (These are not currently implemented).

MODE_COMPLEX_FLOAT
Complex floating point modes. By default these are QCmode, HCmode, SCmode,
DCmode, XCmode, and TCmode.

MODE_CC  Modes representing condition code values. These are CCmode plus any CC_MODE
modes listed in the ‘machine-modes.def’. See Section 17.12 [Jump Patterns],
page 433, also see Section 18.15 [Condition Code], page 572.

MODE_POINTER_BOUNDS
Pointer bounds modes. Used to represent values of pointer bounds type. Opera-
tions in these modes may be executed as NOPs depending on hardware features
and environment setup.

MODE_RANDOM
This is a catchall mode class for modes which don’t fit into the above classes.
Currently VOIDmode and BLKmode are in MODE_RANDOM.

machmode .h also defines various wrapper classes that combine a machine_mode with a
static assertion that a particular condition holds. The classes are:

scalar_int_mode
A mode that has class MODE_INT or MODE_PARTIAL_INT.

scalar_float_mode
A mode that has class MODE_FLOAT or MODE_DECIMAL_FLOAT.

scalar_mode
A mode that holds a single numerical value. In practice this means that the
mode is a scalar_int_mode, is a scalar_float_mode, or has class MODE_FRACT,
MODE_UFRACT, MODE_ACCUM, MODE_UACCUM or MODE_POINTER_BOUNDS.

complex_mode
A mode that has class MODE_COMPLEX_INT or MODE_COMPLEX_FLOAT.

fixed_size_mode
A mode whose size is known at compile time.



276 GNU Compiler Collection (GCC) Internals

Named modes use the most constrained of the available wrapper classes, if one exists,
otherwise they use machine_mode. For example, QImode is a scalar_int_mode, SFmode is
a scalar_float_mode and BLKmode is a plain machine_mode. It is possible to refer to any
mode as a raw machine_mode by adding the E_ prefix, where E stands for “enumeration”.
For example, the raw machine_mode names of the modes just mentioned are E_QImode,
E_SFmode and E_BLKmode respectively.

The wrapper classes implicitly convert to machine_mode and to any wrapper class that
represents a more general condition; for example scalar_int_mode and scalar_float_
mode both convert to scalar_mode and all three convert to fixed_size_mode. The classes
act like machine_modes that accept only certain named modes.

‘machmode.h’ also defines a template class opt_mode<T> that holds a T or nothing, where
T can be either machine_mode or one of the wrapper classes above. The main operations
on an opt_mode<T> x are as follows:

‘x.exists ()’
Return true if x holds a mode rather than nothing.

‘x.exists (&y)’
Return true if x holds a mode rather than nothing, storing the mode in y if so.
y must be assignment-compatible with T.

‘x.require ()’
Assert that x holds a mode rather than nothing and return that mode.

‘x=y Set x to y, where y is a T or implicitly converts to a T.

The default constructor sets an opt_mode<T> to nothing. There is also a constructor that
takes an initial value of type T.

It is possible to use the ‘is-a.h’ accessors on a machine_mode or machine mode wrapper
X:

‘is_a <> (x)’
Return true if x meets the conditions for wrapper class T.

‘is_a <> (x, &y)’
Return true if x meets the conditions for wrapper class T, storing it in y if so.
y must be assignment-compatible with T.

‘as_a <> (%)’
Assert that x meets the conditions for wrapper class T and return it as a T.

‘dyn_cast <T> (x)’
Return an opt_mode<T> that holds x if x meets the conditions for wrapper class
T and that holds nothing otherwise.

The purpose of these wrapper classes is to give stronger static type checking. For example,
if a function takes a scalar_int_mode, a caller that has a general machine_mode must either
check or assert that the code is indeed a scalar integer first, using one of the functions above.

The wrapper classes are normal C++ classes, with user-defined constructors. Sometimes
it is useful to have a POD version of the same type, particularly if the type appears in a
union. The template class pod_mode<T> provides a POD version of wrapper class T. It is
assignment-compatible with T" and implicitly converts to both machine_mode and T.



Chapter 14: RTL Representation 277

Here are some C macros that relate to machine modes:

GET_MODE (x)
Returns the machine mode of the RTX x.

PUT_MODE (x, newmode)
Alters the machine mode of the RTX x to be newmode.

NUM_MACHINE_MODES
Stands for the number of machine modes available on the target machine. This
is one greater than the largest numeric value of any machine mode.

GET_MODE_NAME (m)
Returns the name of mode m as a string.

GET_MODE_CLASS (m)
Returns the mode class of mode m.

GET_MODE_WIDER_MODE (m)
Returns the next wider natural mode. For example, the expression GET_MODE_
WIDER_MODE (QImode) returns HImode.

GET_MODE_SIZE (m)
Returns the size in bytes of a datum of mode m.

GET_MODE_BITSIZE (m)
Returns the size in bits of a datum of mode m.

GET_MODE_IBIT (m)
Returns the number of integral bits of a datum of fixed-point mode m.

GET_MODE_FBIT (m)
Returns the number of fractional bits of a datum of fixed-point mode m.

GET_MODE_MASK (m)
Returns a bitmask containing 1 for all bits in a word that fit within mode m.
This macro can only be used for modes whose bitsize is less than or equal to
HOST_BITS_PER_INT.

GET_MODE_ALIGNMENT (m)
Return the required alignment, in bits, for an object of mode m.

GET_MODE_UNIT_SIZE (m)
Returns the size in bytes of the subunits of a datum of mode m. This is the
same as GET_MODE_SIZE except in the case of complex modes. For them, the
unit size is the size of the real or imaginary part.

GET_MODE_NUNITS (m)
Returns the number of units contained in a mode, i.e., GET_MODE_SIZE divided
by GET_MODE_UNIT_SIZE.

GET_CLASS_NARROWEST_MODE (c)
Returns the narrowest mode in mode class c.

The following 3 variables are defined on every target. They can be used to allocate buffers
that are guaranteed to be large enough to hold any value that can be represented on the



278 GNU Compiler Collection (GCC) Internals

target. The first two can be overridden by defining them in the target’s mode.def file,
however, the value must be a constant that can determined very early in the compilation
process. The third symbol cannot be overridden.

BITS_PER_UNIT
The number of bits in an addressable storage unit (byte). If you do not define
this, the default is 8.

MAX_BITSIZE_MODE_ANY_INT
The maximum bitsize of any mode that is used in integer math. This should be
overridden by the target if it uses large integers as containers for larger vectors
but otherwise never uses the contents to compute integer values.

MAX_BITSIZE_MODE_ANY_MODE
The bitsize of the largest mode on the target. The default value is the largest
mode size given in the mode definition file, which is always correct for targets
whose modes have a fixed size. Targets that might increase the size of a mode
beyond this default should define MAX_BITSIZE_MODE_ANY_MODE to the actual
upper limit in ‘machine-modes.def’.

The global variables byte_mode and word_mode contain modes whose classes are MODE_
INT and whose bitsizes are either BITS_PER_UNIT or BITS_PER_WORD, respectively. On 32-bit
machines, these are QImode and SImode, respectively.

14.7 Constant Expression Types
The simplest RTL expressions are those that represent constant values.

(const_int i)
This type of expression represents the integer value i. i is customarily accessed
with the macro INTVAL as in INTVAL (exp), which is equivalent to XWINT (exp,
0).

Constants generated for modes with fewer bits than in HOST_WIDE_INT must be
sign extended to full width (e.g., with gen_int_mode). For constants for modes
with more bits than in HOST_WIDE_INT the implied high order bits of that con-
stant are copies of the top bit. Note however that values are neither inherently
signed nor inherently unsigned; where necessary, signedness is determined by
the rtl operation instead.

There is only one expression object for the integer value zero; it is the value
of the variable constO_rtx. Likewise, the only expression for integer value one
is found in constl_rtx, the only expression for integer value two is found in
const2_rtx, and the only expression for integer value negative one is found
in constml_rtx. Any attempt to create an expression of code const_int
and value zero, one, two or negative one will return constO_rtx, constl_rtx,
const2_rtx or constml_rtx as appropriate.

Similarly, there is only one object for the integer whose value is STORE_FLAG_
VALUE. It is found in const_true_rtx. If STORE_FLAG_VALUE is one, const_
true_rtx and constl_rtx will point to the same object. If STORE_FLAG_VALUE
is —1, const_true_rtx and constml_rtx will point to the same object.



Chapter 14: RTL Representation 279

(const_double:m i0 i1 ...)
This represents either a floating-point constant of mode m or (on older ports
that do not define TARGET_SUPPORTS_WIDE_INT) an integer constant too large
to fit into HOST_BITS_PER_WIDE_INT bits but small enough to fit within twice
that number of bits. In the latter case, m will be VOIDmode. For integral values
constants for modes with more bits than twice the number in HOST_WIDE_INT
the implied high order bits of that constant are copies of the top bit of CONST_
DOUBLE_HIGH. Note however that integral values are neither inherently signed
nor inherently unsigned; where necessary, signedness is determined by the rtl
operation instead.

On more modern ports, CONST_DOUBLE only represents floating point values.
New ports define TARGET_SUPPORTS_WIDE_INT to make this designation.

If m is VOIDmode, the bits of the value are stored in i0 and il. i0 is customarily
accessed with the macro CONST_DOUBLE_LOW and il with CONST_DOUBLE_HIGH.

If the constant is floating point (regardless of its precision), then the number
of integers used to store the value depends on the size of REAL_VALUE_TYPE
(see Section 18.22 [Floating Point], page 631). The integers represent a float-
ing point number, but not precisely in the target machine’s or host machine’s
floating point format. To convert them to the precise bit pattern used by the
target machine, use the macro REAL_VALUE_TO_TARGET_DOUBLE and friends (see
Section 18.20.2 [Data Output], page 600).

(const_wide_int:m nunits elt0 ...)
This contains an array of HOST_WIDE_INTs that is large enough to hold any
constant that can be represented on the target. This form of rtl is only used
on targets that define TARGET_SUPPORTS_WIDE_INT to be nonzero and then
CONST_DOUBLES are only used to hold floating-point values. If the target leaves
TARGET_SUPPORTS_WIDE_INT defined as 0, CONST_WIDE_INTs are not used and
CONST_DOUBLESs are as they were before.

The values are stored in a compressed format. The higher-order Os or -1s are
not represented if they are just the logical sign extension of the number that is
represented.

CONST_WIDE_INT_VEC (code)
Returns the entire array of HOST_WIDE_INTs that are used to store the value.
This macro should be rarely used.

CONST_WIDE_INT_NUNITS (code)
The number of HOST_WIDE_INTs used to represent the number. Note that this
generally is smaller than the number of HOST_WIDE_INTs implied by the mode
size.

CONST_WIDE_INT_ELT (code, i)
Returns the ith element of the array. Element 0 is contains the low order bits
of the constant.

(const_fixed:m ...)
Represents a fixed-point constant of mode m. The operand is a data structure
of type struct fixed_value and is accessed with the macro CONST_FIXED_



280 GNU Compiler Collection (GCC) Internals

VALUE. The high part of data is accessed with CONST_FIXED_VALUE_HIGH; the
low part is accessed with CONST_FIXED_VALUE_LOW.

(const_poly_int:m [cO cl ...])
Represents a poly_int-style polynomial integer with coefficients c0, cI, .. ..
The coefficients are wide_int-based integers rather than rtxes. CONST_POLY_
INT_COEFFS gives the values of individual coefficients (which is mostly only
useful in low-level routines) and const_poly_int_value gives the full poly_
int value.

(const_vector:m [x0 x1 ...])
Represents a vector constant. The values in square brackets are elements of
the vector, which are always const_int, const_wide_int, const_double or
const_fixed expressions.

Each vector constant v is treated as a specific instance of an arbitrary-length
sequence that itself contains ‘CONST_VECTOR_NPATTERNS (v)’ interleaved pat-
terns. Each pattern has the form:

{ base0, basel, basel + step, basel + step * 2, ... }

The first three elements in each pattern are enough to determine the values of
the other elements. However, if all steps are zero, only the first two elements are
needed. If in addition each basel is equal to the corresponding base0, only the
first element in each pattern is needed. The number of determining elements
per pattern is given by ‘CONST_VECTOR_NELTS_PER_PATTERN (v)’.

For example, the constant:

{o0,1, 2,6, 3,8, 4, 10, 5, 12, 6, 14, 7, 16, 8, 18 }
is interpreted as an interleaving of the sequences:

{0,2,3,4,5,6, 7,81}

{1, 6,8, 10, 12, 14, 16, 18 }
where the sequences are represented by the following patterns:

base0 == 0, basel == 2, step ==

base0 == 1, basel == 6, step ==
In this case:

CONST_VECTOR_NPATTERNS (v) ==

CONST_VECTOR_NELTS_PER_PATTERN (v) ==
Thus the first 6 elements (‘{ 0, 1, 2, 6, 3, 8 }’) are enough to determine the
whole sequence; we refer to them as the “encoded” elements. They are the
only elements present in the square brackets for variable-length const_vectors
(i.e. for const_vectors whose mode m has a variable number of elements).
However, as a convenience to code that needs to handle both const_vectors
and parallels, all elements are present in the square brackets for fixed-length
const_vectors; the encoding scheme simply reduces the amount of work in-
volved in processing constants that follow a regular pattern.

Sometimes this scheme can create two possible encodings of the same vector.
For example { 0, 1 } could be seen as two patterns with one element each or
one pattern with two elements (base0 and basel). The canonical encoding is
always the one with the fewest patterns or (if both encodings have the same
number of petterns) the one with the fewest encoded elements.



Chapter 14: RTL Representation 281

‘const_vector_encoding_nelts (v)’ gives the total number of encoded ele-
ments in v, which is 6 in the example above. CONST_VECTOR_ENCODED_ELT (v,
i) accesses the value of encoded element i.

‘CONST_VECTOR_DUPLICATE_P (v)’ is true if v simply contains repeated in-
stances of ‘CONST_VECTOR_NPATTERNS (v)’ values. This is a shorthand for test-
ing ‘CONST_VECTOR_NELTS_PER_PATTERN (v) == 1’.
‘CONST_VECTOR_STEPPED_P (v)’is true if at least one pattern in v has a nonzero
step. This is a shorthand for testing ‘CONST_VECTOR_NELTS_PER_PATTERN (v)
== 3’

CONST_VECTOR_NUNITS (v) gives the total number of elements in v; it is a
shorthand for getting the number of units in ‘GET_MODE (v)’.

The utility function const_vector_elt gives the value of an arbitrary element
as an rtx. const_vector_int_elt gives the same value as a wide_int.

(const_string str)
Represents a constant string with value str. Currently this is used only for insn
attributes (see Section 17.19 [Insn Attributes], page 450) since constant strings
in C are placed in memory.

(symbol_ref :mode symbol)
Represents the value of an assembler label for data. symbol is a string that
describes the name of the assembler label. If it starts with a ‘*’, the label is
the rest of symbol not including the ‘*’. Otherwise, the label is symbol, usually
prefixed with ¢_’.

The symbol_ref contains a mode, which is usually Pmode. Usually that is the
only mode for which a symbol is directly valid.

(label_ref:mode label)
Represents the value of an assembler label for code. It contains one operand,
an expression, which must be a code_label or a note of type NOTE_INSN_
DELETED_LABEL that appears in the instruction sequence to identify the place
where the label should go.

The reason for using a distinct expression type for code label references is so
that jump optimization can distinguish them.

The label_ref contains a mode, which is usually Pmode. Usually that is the
only mode for which a label is directly valid.

(const:m exp)
Represents a constant that is the result of an assembly-time arithmetic compu-
tation. The operand, exp, contains only const_int, symbol_ref, label_ref
or unspec expressions, combined with plus and minus. Any such unspecs
are target-specific and typically represent some form of relocation operator. m
should be a valid address mode.

(high:m exp)
Represents the high-order bits of exp. The number of bits is machine-dependent
and is normally the number of bits specified in an instruction that initializes the
high order bits of a register. It is used with 1lo_sum to represent the typical two-
instruction sequence used in RISC machines to reference large immediate values



282 GNU Compiler Collection (GCC) Internals

and/or link-time constants such as global memory addresses. In the latter case,
m is Pmode and exp is usually a constant expression involving symbol_ref.

The macro CONSTO_RTX (mode) refers to an expression with value 0 in mode mode. If
mode mode is of mode class MODE_INT, it returns constO_rtx. If mode mode is of mode class
MODE_FLOAT, it returns a CONST_DOUBLE expression in mode mode. Otherwise, it returns a
CONST_VECTOR expression in mode mode. Similarly, the macro CONST1_RTX (mode) refers to
an expression with value 1 in mode mode and similarly for CONST2_RTX. The CONST1_RTX
and CONST2_RTX macros are undefined for vector modes.

14.8 Registers and Memory

Here are the RTL expression types for describing access to machine registers and to main
memory.

(reg:mn) For small values of the integer n (those that are less than FIRST_PSEUDO_
REGISTER), this stands for a reference to machine register number n: a hard
register. For larger values of n, it stands for a temporary value or pseudo
register. The compiler’s strategy is to generate code assuming an unlimited
number of such pseudo registers, and later convert them into hard registers or
into memory references.

m is the machine mode of the reference. It is necessary because machines can
generally refer to each register in more than one mode. For example, a register
may contain a full word but there may be instructions to refer to it as a half
word or as a single byte, as well as instructions to refer to it as a floating point
number of various precisions.

Even for a register that the machine can access in only one mode, the mode
must always be specified.

The symbol FIRST_PSEUDO_REGISTER is defined by the machine description,
since the number of hard registers on the machine is an invariant characteristic
of the machine. Note, however, that not all of the machine registers must be
general registers. All the machine registers that can be used for storage of data
are given hard register numbers, even those that can be used only in certain
instructions or can hold only certain types of data.

A hard register may be accessed in various modes throughout one function,
but each pseudo register is given a natural mode and is accessed only in that
mode. When it is necessary to describe an access to a pseudo register using a
nonnatural mode, a subreg expression is used.

A reg expression with a machine mode that specifies more than one word
of data may actually stand for several consecutive registers. If in addition the
register number specifies a hardware register, then it actually represents several
consecutive hardware registers starting with the specified one.

Each pseudo register number used in a function’s RTL code is represented by
a unique reg expression.

Some pseudo register numbers, those within the range of FIRST_VIRTUAL_
REGISTER to LAST_VIRTUAL_REGISTER only appear during the RTL generation



Chapter 14: RTL Representation 283

phase and are eliminated before the optimization phases. These represent lo-
cations in the stack frame that cannot be determined until RTL generation for
the function has been completed. The following virtual register numbers are
defined:

VIRTUAL_INCOMING_ARGS_REGNUM
This points to the first word of the incoming arguments passed
on the stack. Normally these arguments are placed there by the
caller, but the callee may have pushed some arguments that were
previously passed in registers.

When RTL generation is complete, this virtual register is replaced
by the sum of the register given by ARG_POINTER_REGNUM and the
value of FIRST_PARM_OFFSET.

VIRTUAL_STACK_VARS_REGNUM
If FRAME_GROWS_DOWNWARD is defined to a nonzero value, this points
to immediately above the first variable on the stack. Otherwise, it
points to the first variable on the stack.

VIRTUAL_STACK_VARS_REGNUM is replaced with the sum of
the register given by FRAME_POINTER_REGNUM and the value
TARGET_STARTING_FRAME_OFFSET.

VIRTUAL_STACK_DYNAMIC_REGNUM
This points to the location of dynamically allocated memory on the
stack immediately after the stack pointer has been adjusted by the
amount of memory desired.

This virtual register is replaced by the sum of the register given by
STACK_POINTER_REGNUM and the value STACK_DYNAMIC_OFFSET.

VIRTUAL_OUTGOING_ARGS_REGNUM
This points to the location in the stack at which outgoing arguments
should be written when the stack is pre-pushed (arguments pushed
using push insns should always use STACK_POINTER_REGNUM).

This virtual register is replaced by the sum of the register given by
STACK_POINTER_REGNUM and the value STACK_POINTER_OFFSET.

(subreg:m1 reg:m2 bytenum)
subreg expressions are used to refer to a register in a machine mode other than
its natural one, or to refer to one register of a multi-part reg that actually refers
to several registers.

Each pseudo register has a natural mode. If it is necessary to operate on it in
a different mode, the register must be enclosed in a subreg.

There are currently three supported types for the first operand of a subreg:

e pseudo registers This is the most common case. Most subregs have pseudo
regs as their first operand.

e mem subregs of mem were common in earlier versions of GCC and are still
supported. During the reload pass these are replaced by plain mems. On
machines that do not do instruction scheduling, use of subregs of mem are



284

GNU Compiler Collection (GCC) Internals

still used, but this is no longer recommended. Such subregs are considered
to be register_operands rather than memory_operands before and dur-
ing reload. Because of this, the scheduling passes cannot properly sched-
ule instructions with subregs of mem, so for machines that do scheduling,
subregs of mem should never be used. To support this, the combine and
recog passes have explicit code to inhibit the creation of subregs of mem
when INSN_SCHEDULING is defined.

The use of subregs of mem after the reload pass is an area that is not well
understood and should be avoided. There is still some code in the compiler
to support this, but this code has possibly rotted. This use of subregs is
discouraged and will most likely not be supported in the future.

e hard registers It is seldom necessary to wrap hard registers in subregs; such
registers would normally reduce to a single reg rtx. This use of subregs is
discouraged and may not be supported in the future.

subregs of subregs are not supported. Using simplify_gen_subreg is the
recommended way to avoid this problem.

subregs come in two distinct flavors, each having its own usage and rules:

Paradoxical subregs
When m1 is strictly wider than m2, the subreg expression is called
paradoxical. The canonical test for this class of subreg is:

paradoxical_subreg_p (m1, m2)

Paradoxical subregs can be used as both lvalues and rvalues. When
used as an lvalue, the low-order bits of the source value are stored
in reg and the high-order bits are discarded. When used as an
rvalue, the low-order bits of the subreg are taken from reg while
the high-order bits may or may not be defined.

The high-order bits of rvalues are defined in the following circum-
stances:

e subregs of mem When m2 is smaller than a word, the macro
LOAD_EXTEND_OP, can control how the high-order bits are de-
fined.

e subreg of regs The upper bits are defined when SUBREG_
PROMOTED_VAR_P is true. SUBREG_PROMOTED_UNSIGNED_P de-
scribes what the upper bits hold. Such subregs usually rep-
resent local variables, register variables and parameter pseudo
variables that have been promoted to a wider mode.

bytenum is always zero for a paradoxical subreg, even on big-
endian targets.
For example, the paradoxical subreg:

(set (subreg:SI (reg:HI x) 0) y)
stores the lower 2 bytes of y in x and discards the upper 2 bytes.
A subsequent:

(set z (subreg:SI (reg:HI x) 0))



Chapter 14: RTL Representation 285

would set the lower two bytes of z to y and set the upper two bytes
to an unknown value assuming SUBREG_PROMOTED_VAR_P is false.

Normal subregs
When ml is at least as narrow as m2 the subreg expression is
called normal.

Normal subregs restrict consideration to certain bits of reg. For
this purpose, reg is divided into individually-addressable blocks in
which each block has:

REGMODE_NATURAL_SIZE (m2)

bytes. Usually the value is UNITS_PER_WORD; that is, most tar-
gets usually treat each word of a register as being independently
addressable.

There are two types of normal subreg. If ml is known to be no
bigger than a block, the subreg refers to the least-significant part
(or lowpart) of one block of reg. If m1 is known to be larger than
a block, the subreg refers to two or more complete blocks.

When used as an lvalue, subreg is a block-based accessor. Storing
to a subreg modifies all the blocks of reg that overlap the subreg,
but it leaves the other blocks of reg alone.

When storing to a normal subreg that is smaller than a block, the
other bits of the referenced block are usually left in an undefined
state. This laxity makes it easier to generate efficient code for
such instructions. To represent an instruction that preserves all
the bits outside of those in the subreg, use strict_low_part or
zero_extract around the subreg.

bytenum must identify the offset of the first byte of the subreg
from the start of reg, assuming that reg is laid out in memory
order. The memory order of bytes is defined by two target macros,
WORDS_BIG_ENDIAN and BYTES_BIG_ENDIAN:

e WORDS_BIG_ENDIAN, if set to 1, says that byte number zero is
part of the most significant word; otherwise, it is part of the
least significant word.

e BYTES_BIG_ENDIAN, if set to 1, says that byte number zero is
the most significant byte within a word; otherwise, it is the
least significant byte within a word.

On a few targets, FLOAT_WORDS_BIG_ENDIAN disagrees with WORDS_
BIG_ENDIAN. However, most parts of the compiler treat floating
point values as if they had the same endianness as integer values.
This works because they handle them solely as a collection of integer
values, with no particular numerical value. Only real.c and the
runtime libraries care about FLOAT_WORDS_BIG_ENDIAN.

Thus,
(subreg:HI (reg:SI x) 2)



286

GNU Compiler Collection (GCC) Internals

on a BYTES_BIG_ENDIAN, ‘UNITS_PER_WORD == 4’ target is the same
as

(subreg:HI (reg:SI x) 0)

on a little-endian, ‘UNITS_PER_WORD == 4’ target. Both subregs
access the lower two bytes of register x.

Note that the byte offset is a polynomial integer; it may not be a
compile-time constant on targets with variable-sized modes. How-
ever, the restrictions above mean that there are only a certain set
of acceptable offsets for a given combination of m1 and m2. The
compiler can always tell which blocks a valid subreg occupies, and
whether the subreg is a lowpart of a block.

A MODE_PARTIAL_INT mode behaves as if it were as wide as the corresponding
MODE_INT mode, except that it has an unknown number of undefined bits. For
example:

(subreg:PSI (reg:SI 0) 0)

accesses the whole of ‘(reg:SI 0)’, but the exact relationship between
the PSImode value and the SImode value is not defined. If we assume
‘REGMODE_NATURAL_SIZE (DImode) <= 4’, then the following two subregs:
(subreg:PSI (reg:DI 0) 0)
(subreg:PSI (reg:DI 0) 4)
represent independent 4-byte accesses to the two halves of ‘(reg:DI 0)’. Both
subregs have an unknown number of undefined bits.

If ‘REGMODE_NATURAL_SIZE (PSImode) <= 2’ then these two subregs:
(subreg:HI (reg:PSI 0) 0)
(subreg:HI (reg:PSI 0) 2)
represent independent 2-byte accesses that together span the whole of
‘(reg:PSI 0)’. Storing to the first subreg does not affect the value of the
second, and vice versa. ‘(reg:PSI 0)’ has an unknown number of undefined
bits, so the assignment:
(set (subreg:HI (reg:PSI 0) 0) (reg:HI 4))

does not guarantee that ‘(subreg:HI (reg:PSI 0) 0)’ has the value ‘(reg:HI

4)’.

The rules above apply to both pseudo regs and hard regs. If the semantics

are not correct for particular combinations of m1, m2 and hard reg, the target-

specific code must ensure that those combinations are never used. For example:
TARGET_CAN_CHANGE_MODE_CLASS (m2, m1, class)

must be false for every class class that includes reg.

GCC must be able to determine at compile time whether a subreg is paradoxical,
whether it occupies a whole number of blocks, or whether it is a lowpart of a
block. This means that certain combinations of variable-sized mode are not
permitted. For example, if m2 holds n SI values, where n is greater than zero,
it is not possible to form a DI subreg of it; such a subreg would be paradoxical
when n is 1 but not when n is greater than 1.



Chapter 14: RTL Representation 287

The first operand of a subreg expression is customarily accessed with the
SUBREG_REG macro and the second operand is customarily accessed with the
SUBREG_BYTE macro.

It has been several years since a platform in which BYTES_BIG_ENDIAN not
equal to WORDS_BIG_ENDIAN has been tested. Anyone wishing to support such
a platform in the future may be confronted with code rot.

(scratch:m)

(cc0)

This represents a scratch register that will be required for the execution of a
single instruction and not used subsequently. It is converted into a reg by either
the local register allocator or the reload pass.

scratch is usually present inside a clobber operation (see Section 14.15 [Side
Effects|, page 297).

This refers to the machine’s condition code register. It has no operands and
may not have a machine mode. There are two ways to use it:

e To stand for a complete set of condition code flags. This is best on most
machines, where each comparison sets the entire series of flags.

With this technique, (cc0) may be validly used in only two contexts: as
the destination of an assignment (in test and compare instructions) and in
comparison operators comparing against zero (const_int with value zero;
that is to say, constO_rtx).

e To stand for a single flag that is the result of a single condition. This is
useful on machines that have only a single flag bit, and in which comparison
instructions must specify the condition to test.

With this technique, (cc0) may be validly used in only two contexts: as the
destination of an assignment (in test and compare instructions) where the
source is a comparison operator, and as the first operand of if _then_else
(in a conditional branch).

There is only one expression object of code cc0; it is the value of the variable
ccO_rtx. Any attempt to create an expression of code ccO will return ccO_rtx.

Instructions can set the condition code implicitly. On many machines, nearly
all instructions set the condition code based on the value that they compute or
store. It is not necessary to record these actions explicitly in the RTL because
the machine description includes a prescription for recognizing the instructions
that do so (by means of the macro NOTICE_UPDATE_CC). See Section 18.15
[Condition Code], page 572. Only instructions whose sole purpose is to set
the condition code, and instructions that use the condition code, need mention
(cc0).

On some machines, the condition code register is given a register number and
a reg is used instead of (cc0). This is usually the preferable approach if only
a small subset of instructions modify the condition code. Other machines store
condition codes in general registers; in such cases a pseudo register should be
used.

Some machines, such as the SPARC and RS/6000, have two sets of arithmetic
instructions, one that sets and one that does not set the condition code. This



288 GNU Compiler Collection (GCC) Internals

is best handled by normally generating the instruction that does not set the
condition code, and making a pattern that both performs the arithmetic and
sets the condition code register (which would not be (cc0) in this case). For
examples, search for ‘addcc’ and ‘andcc’ in ‘sparc.md’.

(pc) This represents the machine’s program counter. It has no operands and may
not have a machine mode. (pc) may be validly used only in certain specific
contexts in jump instructions.

There is only one expression object of code pc; it is the value of the variable
pc_rtx. Any attempt to create an expression of code pc will return pc_rtx.

All instructions that do not jump alter the program counter implicitly by in-
crementing it, but there is no need to mention this in the RTL.

(mem:m addr alias)
This RTX represents a reference to main memory at an address represented by
the expression addr. m specifies how large a unit of memory is accessed. alias
specifies an alias set for the reference. In general two items are in different alias
sets if they cannot reference the same memory address.

The construct (mem:BLK (scratch)) is considered to alias all other memories.
Thus it may be used as a memory barrier in epilogue stack deallocation patterns.

(concatm rtx rtx)
This RTX represents the concatenation of two other RTXs. This is used for
complex values. It should only appear in the RTL attached to declarations and
during RTL generation. It should not appear in the ordinary insn chain.

(concatnm [rtx ...])
This RTX represents the concatenation of all the rtx to make a single value.
Like concat, this should only appear in declarations, and not in the insn chain.

14.9 RTL Expressions for Arithmetic

Unless otherwise specified, all the operands of arithmetic expressions must be valid for
mode m. An operand is valid for mode m if it has mode m, or if it is a const_int or
const_double and m is a mode of class MODE_INT.

For commutative binary operations, constants should be placed in the second operand.

(plus:m x y)

(ss_plus:mx y)

(us_plus:m x y)
These three expressions all represent the sum of the values represented by x
and y carried out in machine mode m. They differ in their behavior on overflow
of integer modes. plus wraps round modulo the width of m; ss_plus saturates
at the maximum signed value representable in m; us_plus saturates at the
maximum unsigned value.

(lo_sum:m x y)
This expression represents the sum of x and the low-order bits of y. It is used
with high (see Section 14.7 [Constants|, page 278) to represent the typical two-
instruction sequence used in RISC machines to reference large immediate values



Chapter 14: RTL Representation 289

and/or link-time constants such as global memory addresses. In the latter case,
m is Pmode and y is usually a constant expression involving symbol_ref.

The number of low order bits is machine-dependent but is normally the number
of bits in mode m minus the number of bits set by high.

(minus:m x y)
(ss_minus:m x y)
(us_minus:m x y)

These three expressions represent the result of subtracting y from x, carried
out in mode M. Behavior on overflow is the same as for the three variants of
plus (see above).

(compare:m x y)

(neg:m x)

Represents the result of subtracting y from x for purposes of comparison. The
result is computed without overflow, as if with infinite precision.

Of course, machines cannot really subtract with infinite precision. However,
they can pretend to do so when only the sign of the result will be used, which
is the case when the result is stored in the condition code. And that is the only
way this kind of expression may validly be used: as a value to be stored in the
condition codes, either (cc0) or a register. See Section 14.10 [Comparisons],
page 292.

The mode m is not related to the modes of x and y, but instead is the mode
of the condition code value. If (ccO) is used, it is VOIDmode. Otherwise it
is some mode in class MODE_CC, often CCmode. See Section 18.15 [Condition
Code], page 572. If m is VOIDmode or CCmode, the operation returns sufficient
information (in an unspecified format) so that any comparison operator can
be applied to the result of the COMPARE operation. For other modes in class
MODE_CC, the operation only returns a subset of this information.

Normally, x and y must have the same mode. Otherwise, compare is valid only
if the mode of x is in class MODE_INT and y is a const_int or const_double
with mode VOIDmode. The mode of x determines what mode the comparison is
to be done in; thus it must not be VOIDmode.

If one of the operands is a constant, it should be placed in the second operand
and the comparison code adjusted as appropriate.

A compare specifying two VOIDmode constants is not valid since there is no way
to know in what mode the comparison is to be performed; the comparison must
either be folded during the compilation or the first operand must be loaded into
a register while its mode is still known.

(ss_neg:m x)
(us_neg:m x)

These two expressions represent the negation (subtraction from zero) of the
value represented by x, carried out in mode m. They differ in the behavior
on overflow of integer modes. In the case of neg, the negation of the operand
may be a number not representable in mode m, in which case it is truncated
to m. ss_neg and us_neg ensure that an out-of-bounds result saturates to the
maximum or minimum signed or unsigned value.



290 GNU Compiler Collection (GCC) Internals

(mult:m x y)

(ss_mult:m x y)

(us_mult:m x y)
Represents the signed product of the values represented by x and y carried out
in machine mode m. ss_mult and us_mult ensure that an out-of-bounds result
saturates to the maximum or minimum signed or unsigned value.

Some machines support a multiplication that generates a product wider than
the operands. Write the pattern for this as

(mult:m (sign_extend:m x) (sign_extend:m y))
where m is wider than the modes of x and y, which need not be the same.

For unsigned widening multiplication, use the same idiom, but with zero_
extend instead of sign_extend.

(fma:mx y z)
Represents the fma, fmaf, and fmal builtin functions, which compute ‘x * y +
z’ without doing an intermediate rounding step.

(div:m x y)

(ss_div:m x y)
Represents the quotient in signed division of x by y, carried out in machine mode
m. If m is a floating point mode, it represents the exact quotient; otherwise,
the integerized quotient. ss_div ensures that an out-of-bounds result saturates
to the maximum or minimum signed value.

Some machines have division instructions in which the operands and quo-
tient widths are not all the same; you should represent such instructions using
truncate and sign_extend as in,

(truncate:ml (div:m2 x (sign_extend:m2 y)))

(udiv:m x y)

(us_div:m x y)
Like div but represents unsigned division. us_div ensures that an out-of-
bounds result saturates to the maximum or minimum unsigned value.

(mod:m x y)
(umod:m x y)
Like div and udiv but represent the remainder instead of the quotient.

(smin:m x y)

(smax:m x y)
Represents the smaller (for smin) or larger (for smax) of x and y, interpreted
as signed values in mode m. When used with floating point, if both operands
are zeros, or if either operand is NaN, then it is unspecified which of the two
operands is returned as the result.

(umin:m x y)
(umax:m x y)

Like smin and smax, but the values are interpreted as unsigned integers.

(not:m x) Represents the bitwise complement of the value represented by x, carried out
in mode m, which must be a fixed-point machine mode.



Chapter 14: RTL Representation 291

(and:m x y)
Represents the bitwise logical-and of the values represented by x and y, carried
out in machine mode m, which must be a fixed-point machine mode.

(ior:m x y)
Represents the bitwise inclusive-or of the values represented by x and y, carried
out in machine mode m, which must be a fixed-point mode.

(xor:m x y)
Represents the bitwise exclusive-or of the values represented by x and y, carried
out in machine mode m, which must be a fixed-point mode.

(ashift:m x ¢)

(ss_ashift:m x ¢)

(us_ashift:m x ¢)
These three expressions represent the result of arithmetically shifting x left by
¢ places. They differ in their behavior on overflow of integer modes. An ashift
operation is a plain shift with no special behavior in case of a change in the
sign bit; ss_ashift and us_ashift saturates to the minimum or maximum
representable value if any of the bits shifted out differs from the final sign bit.

x have mode m, a fixed-point machine mode. ¢ be a fixed-point mode or be a
constant with mode VOIDmode; which mode is determined by the mode called
for in the machine description entry for the left-shift instruction. For example,
on the VAX, the mode of ¢ is QImode regardless of m.

(lshiftrt:m x c)

(ashiftrt:m x ¢)
Like ashift but for right shift. Unlike the case for left shift, these two opera-
tions are distinct.

(rotate:m x ¢)
(rotatert:m x ¢)
Similar but represent left and right rotate. If ¢ is a constant, use rotate.

(abs:m x)

(ss_abs:m x)
Represents the absolute value of x, computed in mode m. ss_abs ensures that
an out-of-bounds result saturates to the maximum signed value.

(sqrt:m x)
Represents the square root of x, computed in mode m. Most often m will be a
floating point mode.

(ffs:m x) Represents one plus the index of the least significant 1-bit in x, represented as
an integer of mode m. (The value is zero if x is zero.) The mode of x must be
m or VOIDmode.

(clrsb:m x)
Represents the number of redundant leading sign bits in x, represented as an
integer of mode m, starting at the most significant bit position. This is one less
than the number of leading sign bits (either 0 or 1), with no special cases. The
mode of x must be m or VOIDmode.



292 GNU Compiler Collection (GCC) Internals

(clz:m x) Represents the number of leading 0-bits in x, represented as an integer of mode
m, starting at the most significant bit position. If x is zero, the value is deter-
mined by CLZ_DEFINED_VALUE_AT_ZERO (see Section 18.31 [Misc|, page 642).
Note that this is one of the few expressions that is not invariant under widening.
The mode of x must be m or VOIDmode.

(ctz:m x) Represents the number of trailing 0-bits in x, represented as an integer of mode
m, starting at the least significant bit position. If x is zero, the value is deter-
mined by CTZ_DEFINED_VALUE_AT_ZERO (see Section 18.31 [Misc], page 642).
Except for this case, ctz(x) is equivalent to ffs(x) - 1. The mode of x must
be m or VOIDmode.

(popcount :m x)
Represents the number of 1-bits in x, represented as an integer of mode m. The
mode of x must be m or VOIDmode.

(parity:m x)
Represents the number of 1-bits modulo 2 in x, represented as an integer of
mode m. The mode of x must be m or VOIDmode.

(bswap:m x)
Represents the value x with the order of bytes reversed, carried out in mode
m, which must be a fixed-point machine mode. The mode of x must be m or
VOIDmode.

14.10 Comparison Operations

Comparison operators test a relation on two operands and are considered to represent a
machine-dependent nonzero value described by, but not necessarily equal to, STORE_FLAG_
VALUE (see Section 18.31 [Misc|, page 642) if the relation holds, or zero if it does not, for
comparison operators whose results have a ‘MODE_INT’ mode, FLOAT_STORE_FLAG_VALUE
(see Section 18.31 [Misc], page 642) if the relation holds, or zero if it does not, for comparison
operators that return floating-point values, and a vector of either VECTOR_STORE_FLAG_
VALUE (see Section 18.31 [Misc|, page 642) if the relation holds, or of zeros if it does not, for
comparison operators that return vector results. The mode of the comparison operation is
independent of the mode of the data being compared. If the comparison operation is being
tested (e.g., the first operand of an if _then_else), the mode must be VOIDmode.

There are two ways that comparison operations may be used. The comparison operators
may be used to compare the condition codes (cc0) against zero, as in (eq (cc0) (const_
int 0)). Such a construct actually refers to the result of the preceding instruction in which
the condition codes were set. The instruction setting the condition code must be adjacent
to the instruction using the condition code; only note insns may separate them.

Alternatively, a comparison operation may directly compare two data objects. The mode
of the comparison is determined by the operands; they must both be valid for a common
machine mode. A comparison with both operands constant would be invalid as the machine
mode could not be deduced from it, but such a comparison should never exist in RTL due
to constant folding.

In the example above, if (cc0) were last set to (compare x y), the comparison operation
is identical to (eq x y). Usually only one style of comparisons is supported on a particular



Chapter 14: RTL Representation 293

machine, but the combine pass will try to merge the operations to produce the eq shown
in case it exists in the context of the particular insn involved.

Inequality comparisons come in two flavors, signed and unsigned. Thus, there are distinct
expression codes gt and gtu for signed and unsigned greater-than. These can produce differ-
ent results for the same pair of integer values: for example, 1 is signed greater-than —1 but
not unsigned greater-than, because —1 when regarded as unsigned is actually Oxffffffff
which is greater than 1.

The signed comparisons are also used for floating point values. Floating point comparisons
are distinguished by the machine modes of the operands.

(eq:m x y)
STORE_FLAG_VALUE if the values represented by x and y are equal, otherwise 0.
(ne:m x y)
STORE_FLAG_VALUE if the values represented by x and y are not equal, otherwise
0.
(gt:mx y)
STORE_FLAG_VALUE if the x is greater than y. If they are fixed-point, the com-
parison is done in a signed sense.
(gtu:m x y)
Like gt but does unsigned comparison, on fixed-point numbers only.
(1t:mx y)
(1tu:m x y)
Like gt and gtu but test for “less than”.
(ge:m x y)
(geu:m x y)
Like gt and gtu but test for “greater than or equal”.
(le:mx y)
(leu:m x y)

Like gt and gtu but test for “less than or equal”.

(if _then_else cond then else)
This is not a comparison operation but is listed here because it is always used in
conjunction with a comparison operation. To be precise, cond is a comparison
expression. This expression represents a choice, according to cond, between the
value represented by then and the one represented by else.

On most machines, if_then_else expressions are valid only to express condi-
tional jumps.

(cond [testl valuel test2 value2 ...] default)
Similar to if_then_else, but more general. Each of testl, test2, ... is per-
formed in turn. The result of this expression is the value corresponding to the
first nonzero test, or default if none of the tests are nonzero expressions.

This is currently not valid for instruction patterns and is supported only for
insn attributes. See Section 17.19 [Insn Attributes|, page 450.



294 GNU Compiler Collection (GCC) Internals

14.11 Bit-Fields

Special expression codes exist to represent bit-field instructions.

(sign_extract:m loc size pos)
This represents a reference to a sign-extended bit-field contained or starting in
loc (a memory or register reference). The bit-field is size bits wide and starts
at bit pos. The compilation option BITS_BIG_ENDIAN says which end of the
memory unit pos counts from.

If Ioc is in memory, its mode must be a single-byte integer mode. If loc is in a
register, the mode to use is specified by the operand of the insv or extv pattern
(see Section 17.9 [Standard Names|, page 392) and is usually a full-word integer
mode, which is the default if none is specified.

The mode of pos is machine-specific and is also specified in the insv or extv
pattern.

The mode m is the same as the mode that would be used for loc if it were a
register.

A sign_extract cannot appear as an lvalue, or part thereof, in RTL.

(zero_extract:m loc size pos)
Like sign_extract but refers to an unsigned or zero-extended bit-field. The
same sequence of bits are extracted, but they are filled to an entire word with
zeros instead of by sign-extension.

Unlike sign_extract, this type of expressions can be Ivalues in RTL; they may
appear on the left side of an assignment, indicating insertion of a value into the
specified bit-field.

14.12 Vector Operations

All normal RTL expressions can be used with vector modes; they are interpreted as operat-
ing on each part of the vector independently. Additionally, there are a few new expressions
to describe specific vector operations.

(vec_merge:m vecl vec2 items)
This describes a merge operation between two vectors. The result is a vector of
mode m; its elements are selected from either vecl or vec2. Which elements are
selected is described by items, which is a bit mask represented by a const_int;
a zero bit indicates the corresponding element in the result vector is taken from
vec2 while a set bit indicates it is taken from vecl.

(vec_select:m vecl selection)

This describes an operation that selects parts of a vector. vecl is the source
vector, and selection is a parallel that contains a const_int (or another
expression, if the selection can be made at runtime) for each of the subparts
of the result vector, giving the number of the source subpart that should be
stored into it. The result mode m is either the submode for a single element of
vecl (if only one subpart is selected), or another vector mode with that element
submode (if multiple subparts are selected).



Chapter 14: RTL Representation 295

(vec_concat:m x1 x2)
Describes a vector concat operation. The result is a concatenation of the vectors
or scalars x1 and x2; its length is the sum of the lengths of the two inputs.

(vec_duplicate:m x)
This operation converts a scalar into a vector or a small vector into a larger
one by duplicating the input values. The output vector mode must have the
same submodes as the input vector mode or the scalar modes, and the number
of output parts must be an integer multiple of the number of input parts.

(vec_series:m base step)
This operation creates a vector in which element i is equal to ‘base + i*step’.
m must be a vector integer mode.

14.13 Conversions

All conversions between machine modes must be represented by explicit conversion oper-
ations. For example, an expression which is the sum of a byte and a full word cannot be
written as (plus:SI (reg:QI 34) (reg:SI 80)) because the plus operation requires two
operands of the same machine mode. Therefore, the byte-sized operand is enclosed in a
conversion operation, as in

(plus:SI (sign_extend:SI (reg:QI 34)) (reg:SI 80))

The conversion operation is not a mere placeholder, because there may be more than one
way of converting from a given starting mode to the desired final mode. The conversion
operation code says how to do it.

For all conversion operations, x must not be V0IDmode because the mode in which to do
the conversion would not be known. The conversion must either be done at compile-time
or x must be placed into a register.

(sign_extend:m x)
Represents the result of sign-extending the value x to machine mode m. m
must be a fixed-point mode and x a fixed-point value of a mode narrower than
m.

(zero_extend:m x)
Represents the result of zero-extending the value x to machine mode m. m
must be a fixed-point mode and x a fixed-point value of a mode narrower than
m.

(float_extend:m x)
Represents the result of extending the value x to machine mode m. m must be
a floating point mode and x a floating point value of a mode narrower than m.

(truncate:m x)
Represents the result of truncating the value x to machine mode m. m must
be a fixed-point mode and x a fixed-point value of a mode wider than m.

(ss_truncate:m x)
Represents the result of truncating the value x to machine mode m, using
signed saturation in the case of overflow. Both m and the mode of x must be
fixed-point modes.



296 GNU Compiler Collection (GCC) Internals

(us_truncate:m x)
Represents the result of truncating the value x to machine mode m, using
unsigned saturation in the case of overflow. Both m and the mode of x must
be fixed-point modes.

(float_truncate:m x)
Represents the result of truncating the value x to machine mode m. m must
be a floating point mode and x a floating point value of a mode wider than m.

(float:m x)
Represents the result of converting fixed point value x, regarded as signed, to
floating point mode m.

(unsigned_float:m x)
Represents the result of converting fixed point value x, regarded as unsigned,
to floating point mode m.

(fix:m x) When m is a floating-point mode, represents the result of converting floating
point value x (valid for mode m) to an integer, still represented in floating point
mode m, by rounding towards zero.

When m is a fixed-point mode, represents the result of converting floating point
value x to mode m, regarded as signed. How rounding is done is not specified, so
this operation may be used validly in compiling C code only for integer-valued
operands.

(unsigned_fix:m x)
Represents the result of converting floating point value x to fixed point mode
m, regarded as unsigned. How rounding is done is not specified.

(fract_convert:m x)
Represents the result of converting fixed-point value x to fixed-point mode m,
signed integer value x to fixed-point mode m, floating-point value x to fixed-
point mode m, fixed-point value x to integer mode m regarded as signed, or
fixed-point value x to floating-point mode m. When overflows or underflows
happen, the results are undefined.

(sat_fract:m x)
Represents the result of converting fixed-point value x to fixed-point mode m,
signed integer value x to fixed-point mode m, or floating-point value x to fixed-
point mode m. When overflows or underflows happen, the results are saturated
to the maximum or the minimum.

(unsigned_fract_convert:m x)
Represents the result of converting fixed-point value x to integer mode m re-
garded as unsigned, or unsigned integer value x to fixed-point mode m. When
overflows or underflows happen, the results are undefined.

(unsigned_sat_fract:m x)
Represents the result of converting unsigned integer value x to fixed-point mode
m. When overflows or underflows happen, the results are saturated to the
maximum or the minimum.



Chapter 14: RTL Representation 297

14.14 Declarations

Declaration expression codes do not represent arithmetic operations but rather state asser-
tions about their operands.

(strict_low_part (subreg:m (reg:n r) 0))
This expression code is used in only one context: as the destination operand
of a set expression. In addition, the operand of this expression must be a
non-paradoxical subreg expression.

The presence of strict_low_part says that the part of the register which is
meaningful in mode n, but is not part of mode m, is not to be altered. Normally,
an assignment to such a subreg is allowed to have undefined effects on the rest
of the register when m is smaller than ‘REGMODE_NATURAL_SIZE (n)’.

14.15 Side Effect Expressions

The expression codes described so far represent values, not actions. But machine instruc-
tions never produce values; they are meaningful only for their side effects on the state of
the machine. Special expression codes are used to represent side effects.

The body of an instruction is always one of these side effect codes; the codes described
above, which represent values, appear only as the operands of these.

(set 1lval x)
Represents the action of storing the value of x into the place represented by
Ival. Ival must be an expression representing a place that can be stored in: reg
(or subreg, strict_low_part or zero_extract), mem, pc, parallel, or ccO.

If Ival is a reg, subreg or mem, it has a machine mode; then x must be valid
for that mode.

If Ival is a reg whose machine mode is less than the full width of the register,
then it means that the part of the register specified by the machine mode is
given the specified value and the rest of the register receives an undefined value.
Likewise, if Ival is a subreg whose machine mode is narrower than the mode of
the register, the rest of the register can be changed in an undefined way.

If Ival is a strict_low_part of a subreg, then the part of the register specified
by the machine mode of the subreg is given the value x and the rest of the
register is not changed.

If Ival is a zero_extract, then the referenced part of the bit-field (a memory
or register reference) specified by the zero_extract is given the value x and
the rest of the bit-field is not changed. Note that sign_extract cannot appear
in lval.

If Ival is (cc0), it has no machine mode, and x may be either a compare
expression or a value that may have any mode. The latter case represents
a “test” instruction. The expression (set (ccO) (reg:m n)) is equivalent to
(set (cc0) (compare (reg:m n) (const_int 0))). Use the former expression
to save space during the compilation.

If Ival is a parallel, it is used to represent the case of a function returning a
structure in multiple registers. Each element of the parallel is an expr_list



298

(return)

GNU Compiler Collection (GCC) Internals

whose first operand is a reg and whose second operand is a const_int repre-
senting the offset (in bytes) into the structure at which the data in that register
corresponds. The first element may be null to indicate that the structure is also
passed partly in memory.

If Ival is (pc), we have a jump instruction, and the possibilities for x are very
limited. It may be a label_ref expression (unconditional jump). It may be an
if_then_else (conditional jump), in which case either the second or the third
operand must be (pc) (for the case which does not jump) and the other of the
two must be a label_ref (for the case which does jump). x may also be a mem
or (plus:SI (pc) y), where y may be a reg or a mem; these unusual patterns
are used to represent jumps through branch tables.

If Ival is neither (cc0) nor (pc), the mode of Ival must not be V0IDmode and
the mode of x must be valid for the mode of Ival.

Ival is customarily accessed with the SET_DEST macro and x with the SET_SRC
macro.

As the sole expression in a pattern, represents a return from the current func-
tion, on machines where this can be done with one instruction, such as VAXen.
On machines where a multi-instruction “epilogue” must be executed in order
to return from the function, returning is done by jumping to a label which
precedes the epilogue, and the return expression code is never used.

Inside an if _then_else expression, represents the value to be placed in pc to
return to the caller.

Note that an insn pattern of (return) is logically equivalent to (set (pc)
(return)), but the latter form is never used.

(simple_return)

Like (return), but truly represents only a function return, while (return) may
represent an insn that also performs other functions of the function epilogue.
Like (return), this may also occur in conditional jumps.

(call function nargs)

Represents a function call. function is a mem expression whose address is the
address of the function to be called. nargs is an expression which can be used
for two purposes: on some machines it represents the number of bytes of stack
argument; on others, it represents the number of argument registers.

Fach machine has a standard machine mode which function must have. The
machine description defines macro FUNCTION_MODE to expand into the requisite
mode name. The purpose of this mode is to specify what kind of addressing
is allowed, on machines where the allowed kinds of addressing depend on the
machine mode being addressed.

(clobber x)

Represents the storing or possible storing of an unpredictable, undescribed value
into x, which must be a reg, scratch, parallel or mem expression.

One place this is used is in string instructions that store standard values into
particular hard registers. It may not be worth the trouble to describe the values



Chapter 14: RTL Representation 299

(use x)

that are stored, but it is essential to inform the compiler that the registers will
be altered, lest it attempt to keep data in them across the string instruction.

If x is (mem:BLK (const_int 0)) or (mem:BLK (scratch)), it means that all
memory locations must be presumed clobbered. If x is a parallel, it has the
same meaning as a parallel in a set expression.

Note that the machine description classifies certain hard registers as “call-
clobbered”. All function call instructions are assumed by default to clobber
these registers, so there is no need to use clobber expressions to indicate this
fact. Also, each function call is assumed to have the potential to alter any
memory location, unless the function is declared const.

If the last group of expressions in a parallel are each a clobber expression
whose arguments are reg or match_scratch (see Section 17.4 [RTL Template],
page 339) expressions, the combiner phase can add the appropriate clobber
expressions to an insn it has constructed when doing so will cause a pattern to
be matched.

This feature can be used, for example, on a machine that whose multiply and
add instructions don’t use an MQ register but which has an add-accumulate
instruction that does clobber the MQ register. Similarly, a combined instruction
might require a temporary register while the constituent instructions might not.

When a clobber expression for a register appears inside a parallel with other
side effects, the register allocator guarantees that the register is unoccupied
both before and after that insn if it is a hard register clobber. For pseudo-
register clobber, the register allocator and the reload pass do not assign the
same hard register to the clobber and the input operands if there is an insn al-
ternative containing the ‘&’ constraint (see Section 17.8.4 [Modifiers], page 356)
for the clobber and the hard register is in register classes of the clobber in the
alternative. You can clobber either a specific hard register, a pseudo register, or
a scratch expression; in the latter two cases, GCC will allocate a hard register
that is available there for use as a temporary.

For instructions that require a temporary register, you should use scratch
instead of a pseudo-register because this will allow the combiner phase to add
the clobber when required. You do this by coding (clobber (match_scratch
..)). If you do clobber a pseudo register, use one which appears nowhere
else—generate a new one each time. Otherwise, you may confuse CSE.

There is one other known use for clobbering a pseudo register in a parallel:
when one of the input operands of the insn is also clobbered by the insn. In
this case, using the same pseudo register in the clobber and elsewhere in the
insn produces the expected results.

Represents the use of the value of x. It indicates that the value in x at this
point in the program is needed, even though it may not be apparent why this
is so. Therefore, the compiler will not attempt to delete previous instructions
whose only effect is to store a value in x. x must be a reg expression.

In some situations, it may be tempting to add a use of a register in a parallel
to describe a situation where the value of a special register will modify the
behavior of the instruction. A hypothetical example might be a pattern for an



300

GNU Compiler Collection (GCC) Internals

addition that can either wrap around or use saturating addition depending on
the value of a special control register:

(parallel [(set (reg:SI 2) (unspec:SI [(reg:SI 3)
(reg:SI 4)1 0))
(use (reg:SI 1))1)

This will not work, several of the optimizers only look at expressions locally; it
is very likely that if you have multiple insns with identical inputs to the unspec,
they will be optimized away even if register 1 changes in between.

This means that use can only be used to describe that the register is live. You
should think twice before adding use statements, more often you will want to
use unspec instead. The use RTX is most commonly useful to describe that
a fixed register is implicitly used in an insn. It is also safe to use in patterns
where the compiler knows for other reasons that the result of the whole pattern
is variable, such as ‘cpymemm’ or ‘call’ patterns.

During the reload phase, an insn that has a use as pattern can carry a reg_equal
note. These use insns will be deleted before the reload phase exits.

During the delayed branch scheduling phase, x may be an insn. This indicates
that x previously was located at this place in the code and its data dependencies
need to be taken into account. These use insns will be deleted before the delayed
branch scheduling phase exits.

(parallel [x0 x1 ...1)

Represents several side effects performed in parallel. The square brackets stand
for a vector; the operand of parallel is a vector of expressions. x0, xI and so
on are individual side effect expressions—expressions of code set, call, return,
simple_return, clobber or use.

“In parallel” means that first all the values used in the individual side-effects are
computed, and second all the actual side-effects are performed. For example,
(parallel [(set (reg:SI 1) (mem:SI (reg:SI 1)))
(set (mem:SI (reg:SI 1)) (reg:SI 1))1)

says unambiguously that the values of hard register 1 and the memory location
addressed by it are interchanged. In both places where (reg:SI 1) appears as
a memory address it refers to the value in register 1 before the execution of the
insn.

It follows that it is incorrect to use parallel and expect the result of one set
to be available for the next one. For example, people sometimes attempt to
represent a jump-if-zero instruction this way:
(parallel [(set (ccO) (reg:SI 34))
(set (pc) (if_then_else
(eq (cc0) (const_int 0))
(label_ref ...)
(pcI) D)
But this is incorrect, because it says that the jump condition depends on the
condition code value before this instruction, not on the new value that is set by
this instruction.

Peephole optimization, which takes place together with final assembly code
output, can produce insns whose patterns consist of a parallel whose elements



Chapter 14: RTL Representation 301

are the operands needed to output the resulting assembler code—often reg, mem
or constant expressions. This would not be well-formed RTL at any other stage
in compilation, but it is OK then because no further optimization remains to
be done. However, the definition of the macro NOTICE_UPDATE_CC, if any, must
deal with such insns if you define any peephole optimizations.

(cond_exec [cond expr])

(sequence

Represents a conditionally executed expression. The expr is executed only if
the cond is nonzero. The cond expression must not have side-effects, but the
expr may very well have side-effects.

[insns ...])

Represents a sequence of insns. If a sequence appears in the chain of insns, then
each of the insns that appears in the sequence must be suitable for appearing
in the chain of insns, i.e. must satisfy the INSN_P predicate.

After delay-slot scheduling is completed, an insn and all the insns that reside
in its delay slots are grouped together into a sequence. The insn requiring the
delay slot is the first insn in the vector; subsequent insns are to be placed in
the delay slot.

INSN_ANNULLED_BRANCH_P is set on an insn in a delay slot to indicate that a
branch insn should be used that will conditionally annul the effect of the insns
in the delay slots. In such a case, INSN_FROM_TARGET_P indicates that the insn
is from the target of the branch and should be executed only if the branch is
taken; otherwise the insn should be executed only if the branch is not taken.
See Section 17.19.8 [Delay Slots], page 459.

Some back ends also use sequence objects for purposes other than delay-slot
groups. This is not supported in the common parts of the compiler, which treat
such sequences as delay-slot groups.

DWARF?2 Call Frame Address (CFA) adjustments are sometimes also expressed
using sequence objects as the value of a RTX_FRAME_RELATED_P note. This only
happens if the CFA adjustments cannot be easily derived from the pattern of
the instruction to which the note is attached. In such cases, the value of the
note is used instead of best-guesing the semantics of the instruction. The back
end can attach notes containing a sequence of set patterns that express the
effect of the parent instruction.

These expression codes appear in place of a side effect, as the body of an insn, though
strictly speaking they do not always describe side effects as such:

(asm_input s)

Represents literal assembler code as described by the string s.

(unspec [operands ...] index)
(unspec_volatile [operands ...] index)

Represents a machine-specific operation on operands. index selects between
multiple machine-specific operations. unspec_volatile is used for volatile op-
erations and operations that may trap; unspec is used for other operations.

These codes may appear inside a pattern of an insn, inside a parallel, or
inside an expression.



302

GNU Compiler Collection (GCC) Internals

(addr_vec:m [1r0 1r1 ...])

Represents a table of jump addresses. The vector elements Ir0, etc., are label_
ref expressions. The mode m specifies how much space is given to each address;
normally m would be Pmode.

(addr_diff_vec:m base [1r0 1rl ...] min max flags)

Represents a table of jump addresses expressed as offsets from base. The vector
elements Ir0, etc., are label_ref expressions and so is base. The mode m
specifies how much space is given to each address-difference. min and max are
set up by branch shortening and hold a label with a minimum and a maximum
address, respectively. flags indicates the relative position of base, min and max
to the containing insn and of min and max to base. See rtl.def for details.

(prefetch:m addr rw locality)

Represents prefetch of memory at address addr. Operand rw is 1 if the
prefetch is for data to be written, 0 otherwise; targets that do not support
write prefetches should treat this as a normal prefetch. Operand locality
specifies the amount of temporal locality; 0 if there is none or 1, 2, or 3 for
increasing levels of temporal locality; targets that do not support locality hints
should ignore this.

This insn is used to minimize cache-miss latency by moving data into a cache
before it is accessed. It should use only non-faulting data prefetch instructions.

14.16 Embedded Side-Effects on Addresses

Six special side-effect expression codes appear as memory addresses.

(pre_dec:m x)

Represents the side effect of decrementing x by a standard amount and repre-
sents also the value that x has after being decremented. x must be a reg or
mem, but most machines allow only a reg. m must be the machine mode for
pointers on the machine in use. The amount x is decremented by is the length
in bytes of the machine mode of the containing memory reference of which this
expression serves as the address. Here is an example of its use:
(mem:DF (pre_dec:SI (reg:SI 39)))

This says to decrement pseudo register 39 by the length of a DFmode value and
use the result to address a DFmode value.

(pre_inc:m x)

Similar, but specifies incrementing x instead of decrementing it.

(post_dec:m x)

Represents the same side effect as pre_dec but a different value. The value
represented here is the value x has before being decremented.

(post_inc:m x)

Similar, but specifies incrementing x instead of decrementing it.

(post_modify:m x y)

Represents the side effect of setting x to y and represents x before x is modified.
x must be a reg or mem, but most machines allow only a reg. m must be the
machine mode for pointers on the machine in use.



Chapter 14: RTL Representation 303

The expression y must be one of three forms: (plus:m x z), (minus:m x z),
or (plus:m x i), where z is an index register and i is a constant.
Here is an example of its use:
(mem:SF (post_modify:SI (reg:SI 42) (plus (reg:SI 42)
(reg:SI 48))))
This says to modify pseudo register 42 by adding the contents of pseudo register
48 to it, after the use of what ever 42 points to.

(pre_modify:m x expr)
Similar except side effects happen before the use.

These embedded side effect expressions must be used with care. Instruction patterns may
not use them. Until the ‘flow’ pass of the compiler, they may occur only to represent pushes
onto the stack. The ‘flow’ pass finds cases where registers are incremented or decremented
in one instruction and used as an address shortly before or after; these cases are then
transformed to use pre- or post-increment or -decrement.

If a register used as the operand of these expressions is used in another address in an
insn, the original value of the register is used. Uses of the register outside of an address are
not permitted within the same insn as a use in an embedded side effect expression because
such insns behave differently on different machines and hence must be treated as ambiguous
and disallowed.

An instruction that can be represented with an embedded side effect could also be rep-
resented using parallel containing an additional set to describe how the address register
is altered. This is not done because machines that allow these operations at all typically
allow them wherever a memory address is called for. Describing them as additional parallel
stores would require doubling the number of entries in the machine description.

14.17 Assembler Instructions as Expressions

The RTX code asm_operands represents a value produced by a user-specified assembler
instruction. It is used to represent an asm statement with arguments. An asm statement
with a single output operand, like this:
asm ("foo %1,%2,%0" : "=a" (outputvar) : "g" (x + y), "di" (*z));
is represented using a single asm_operands RTX which represents the value that is stored
in outputvar:
(set rtx-for-outputvar
(asm_operands "foo %1,%2,%0" "a" 0
[rtx-for-addition-result rtx-for-+*z]
[(asm_input:m1 "g")
(asm_input:m2 "di")1))
Here the operands of the asm_operands RTX are the assembler template string, the output-
operand’s constraint, the index-number of the output operand among the output operands
specified, a vector of input operand RTX’s, and a vector of input-operand modes and
constraints. The mode m1 is the mode of the sum x+y; m2 is that of *z.

When an asm statement has multiple output values, its insn has several such set RTX’s
inside of a parallel. Each set contains an asm_operands; all of these share the same
assembler template and vectors, but each contains the constraint for the respective output
operand. They are also distinguished by the output-operand index number, which is 0, 1,
... for successive output operands.



304 GNU Compiler Collection (GCC) Internals

14.18 Variable Location Debug Information in RTL

Variable tracking relies on MEM_EXPR and REG_EXPR annotations to determine what user
variables memory and register references refer to.

Variable tracking at assignments uses these notes only when they refer to variables that
live at fixed locations (e.g., addressable variables, global non-automatic variables). For
variables whose location may vary, it relies on the following types of notes.

(var_location:mode var exp stat)
Binds variable var, a tree, to value exp, an RTL expression. It appears only in
NOTE_INSN_VAR_LOCATION and DEBUG_INSNs, with slightly different meanings.
mode, if present, represents the mode of exp, which is useful if it is a modeless
expression. stat is only meaningful in notes, indicating whether the variable is
known to be initialized or uninitialized.

(debug_expr:mode decl)
Stands for the value bound to the DEBUG_EXPR_DECL decl, that points back to
it, within value expressions in VAR_LOCATION nodes.

(debug_implicit_ptr:mode decl)
Stands for the location of a decl that is no longer addressable.

(entry_value:mode decl)
Stands for the value a decl had at the entry point of the containing function.

(debug_parameter_ref :mode decl)
Refers to a parameter that was completely optimized out.

(debug_marker:mode)
Marks a program location. With VOIDmode, it stands for the beginning of a
statement, a recommended inspection point logically after all prior side effects,
and before any subsequent side effects. With BLKmode, it indicates an inline
entry point: the lexical block encoded in the INSN_LOCATION is the enclosing
block that encloses the inlined function.

14.19 Insns

The RTL representation of the code for a function is a doubly-linked chain of objects called
insns. Insns are expressions with special codes that are used for no other purpose. Some
insns are actual instructions; others represent dispatch tables for switch statements; others
represent labels to jump to or various sorts of declarative information.

In addition to its own specific data, each insn must have a unique id-number that dis-
tinguishes it from all other insns in the current function (after delayed branch scheduling,
copies of an insn with the same id-number may be present in multiple places in a function,
but these copies will always be identical and will only appear inside a sequence), and chain
pointers to the preceding and following insns. These three fields occupy the same position
in every insn, independent of the expression code of the insn. They could be accessed with
XEXP and XINT, but instead three special macros are always used:

INSN_UID (i)
Accesses the unique id of insn i.



Chapter 14: RTL Representation 305

PREV_INSN (i)
Accesses the chain pointer to the insn preceding i. If i is the first insn, this is
a null pointer.

NEXT_INSN (i)
Accesses the chain pointer to the insn following i. If i is the last insn, this is a
null pointer.

The first insn in the chain is obtained by calling get_insns; the last insn is the result
of calling get_last_insn. Within the chain delimited by these insns, the NEXT_INSN and
PREV_INSN pointers must always correspond: if insn is not the first insn,

NEXT_INSN (PREV_INSN (insn)) == insn

is always true and if insn is not the last insn,
PREV_INSN (NEXT_INSN (insn)) == insn

is always true.

After delay slot scheduling, some of the insns in the chain might be sequence expressions,
which contain a vector of insns. The value of NEXT_INSN in all but the last of these insns
is the next insn in the vector; the value of NEXT_INSN of the last insn in the vector is the
same as the value of NEXT_INSN for the sequence in which it is contained. Similar rules
apply for PREV_INSN.

This means that the above invariants are not necessarily true for insns inside sequence
expressions. Specifically, if insn is the first insn in a sequence, NEXT_INSN (PREV_INSN
(insn)) is the insn containing the sequence expression, as is the value of PREV_INSN
(NEXT_INSN (insn)) if insn is the last insn in the sequence expression. You can use these
expressions to find the containing sequence expression.

Every insn has one of the following expression codes:

insn The expression code insn is used for instructions that do not jump and do not
do function calls. sequence expressions are always contained in insns with code
insn even if one of those insns should jump or do function calls.

Insns with code insn have four additional fields beyond the three mandatory
ones listed above. These four are described in a table below.

jump_insn
The expression code jump_insn is used for instructions that may jump (or,
more generally, may contain label_ref expressions to which pc can be set in
that instruction). If there is an instruction to return from the current function,
it is recorded as a jump_insn.

jump_insn insns have the same extra fields as insn insns, accessed in the same
way and in addition contain a field JUMP_LABEL which is defined once jump
optimization has completed.

For simple conditional and unconditional jumps, this field contains the code_
label to which this insn will (possibly conditionally) branch. In a more complex
jump, JUMP_LABEL records one of the labels that the insn refers to; other jump
target labels are recorded as REG_LABEL_TARGET notes. The exception is addr_
vec and addr_diff_vec, where JUMP_LABEL is NULL_RTX and the only way to
find the labels is to scan the entire body of the insn.



306

call_insn

code_label

GNU Compiler Collection (GCC) Internals

Return insns count as jumps, but their JUMP_LABEL is RETURN or SIMPLE_
RETURN.

The expression code call_insn is used for instructions that may do function
calls. It is important to distinguish these instructions because they imply that
certain registers and memory locations may be altered unpredictably.

call_insn insns have the same extra fields as insn insns, accessed in the same
way and in addition contain a field CALL_INSN_FUNCTION_USAGE, which contains
a list (chain of expr_list expressions) containing use, clobber and sometimes
set expressions that denote hard registers and mems used or clobbered by the
called function.

A mem generally points to a stack slot in which arguments passed to the libcall by
reference (see Section 18.9.7 [Register Arguments|, page 536) are stored. If the
argument is caller-copied (see Section 18.9.7 [Register Arguments|, page 536),
the stack slot will be mentioned in clobber and use entries; if it’s callee-copied,
only a use will appear, and the mem may point to addresses that are not stack
slots.

Registers occurring inside a clobber in this list augment registers specified in
CALL_USED_REGISTERS (see Section 18.7.1 [Register Basics|, page 505).

If the list contains a set involving two registers, it indicates that the function
returns one of its arguments. Such a set may look like a no-op if the same
register holds the argument and the return value.

A code_label insn represents a label that a jump insn can jump to. It con-
tains two special fields of data in addition to the three standard ones. CODE_
LABEL_NUMBER is used to hold the label number, a number that identifies this
label uniquely among all the labels in the compilation (not just in the current
function). Ultimately, the label is represented in the assembler output as an
assembler label, usually of the form ‘Ln’ where n is the label number.

When a code_label appears in an RTL expression, it normally appears within
a label_ref which represents the address of the label, as a number.

Besides as a code_label, a label can also be represented as a note of type
NOTE_INSN_DELETED_LABEL.

The field LABEL_NUSES is only defined once the jump optimization phase is
completed. It contains the number of times this label is referenced in the
current function.

The field LABEL_KIND differentiates four different types of labels: LABEL_
NORMAL, LABEL_STATIC_ENTRY, LABEL_GLOBAL_ENTRY, and LABEL_WEAK_ENTRY.
The only labels that do not have type LABEL_NORMAL are alternate entry points
to the current function. These may be static (visible only in the containing
translation unit), global (exposed to all translation units), or weak (global,
but can be overridden by another symbol with the same name).

Much of the compiler treats all four kinds of label identically. Some of it needs
to know whether or not a label is an alternate entry point; for this purpose,



Chapter 14: RTL Representation 307

the macro LABEL_ALT_ENTRY_P is provided. It is equivalent to testing whether
‘LABEL_KIND (label) == LABEL_NORMAL’. The only place that cares about the
distinction between static, global, and weak alternate entry points, besides the
front-end code that creates them, is the function output_alternate_entry_
point, in ‘final.c’.

To set the kind of a label, use the SET_LABEL_KIND macro.

jump_table_data

barrier

note

A jump_table_data insn is a placeholder for the jump-table data of a casesi
or tablejump insn. They are placed after a tablejump_p insn. A jump_table_
data insn is not part o a basic blockm but it is associated with the basic block
that ends with the tablejump_p insn. The PATTERN of a jump_table_data
is always either an addr_vec or an addr_diff_vec, and a jump_table_data
insn is always preceded by a code_label. The tablejump_p insn refers to that
code_label via its JUMP_LABEL.

Barriers are placed in the instruction stream when control cannot flow past
them. They are placed after unconditional jump instructions to indicate that
the jumps are unconditional and after calls to volatile functions, which do

not return (e.g., exit). They contain no information beyond the three standard
fields.

note insns are used to represent additional debugging and declarative informa-
tion. They contain two nonstandard fields, an integer which is accessed with
the macro NOTE_LINE_NUMBER and a string accessed with NOTE_SOURCE_FILE.

If NOTE_LINE_NUMBER is positive, the note represents the position of a source
line and NOTE_SOURCE_FILE is the source file name that the line came from.
These notes control generation of line number data in the assembler output.

Otherwise, NOTE_LINE_NUMBER is not really a line number but a code with one
of the following values (and NOTE_SOURCE_FILE must contain a null pointer):

NOTE_INSN_DELETED
Such a note is completely ignorable. Some passes of the compiler
delete insns by altering them into notes of this kind.

NOTE_INSN_DELETED_LABEL
This marks what used to be a code_label, but was not used for
other purposes than taking its address and was transformed to mark
that no code jumps to it.

NOTE_INSN_BLOCK_BEG

NOTE_INSN_BLOCK_END
These types of notes indicate the position of the beginning and end
of a level of scoping of variable names. They control the output of
debugging information.

NOTE_INSN_EH_REGION_BEG

NOTE_INSN_EH_REGION_END
These types of notes indicate the position of the beginning and
end of a level of scoping for exception handling. NOTE_EH_HANDLER
identifies which region is associated with these notes.



308

debug_insn

GNU Compiler Collection (GCC) Internals

NOTE_INSN_FUNCTION_BEG
Appears at the start of the function body, after the function pro-
logue.

NOTE_INSN_VAR_LOCATION
This note is used to generate variable location debugging infor-
mation. It indicates that the user variable in its VAR_LOCATION
operand is at the location given in the RTL expression, or holds a
value that can be computed by evaluating the RTL expression from
that static point in the program up to the next such note for the
same user variable.

NOTE_INSN_BEGIN_STMT
This note is used to generate is_stmt markers in line number de-
buggign information. It indicates the beginning of a user statement.

NOTE_INSN_INLINE_ENTRY
This note is used to generate entry_pc for inlined subroutines in
debugging information. It indicates an inspection point at which
all arguments for the inlined function have been bound, and before
its first statement.

These codes are printed symbolically when they appear in debugging dumps.

The expression code debug_insn is used for pseudo-instructions that
hold debugging information for variable tracking at assignments (see
‘~fvar-tracking-assignments’ option). They are the RTL representation
of GIMPLE_DEBUG statements (Section 12.8.7 [GIMPLE_DEBUG|, page 229),
with a VAR_LOCATION operand that binds a user variable tree to an RTL
representation of the value in the corresponding statement. A DEBUG_EXPR in
it stands for the value bound to the corresponding DEBUG_EXPR_DECL.

GIMPLE_DEBUG_BEGIN_STMT and GIMPLE_DEBUG_INLINE_ENTRY are expanded to
RTL as a DEBUG_INSN with a DEBUG_MARKER PATTERN; the difference is the RTL
mode: the former’s DEBUG_MARKER is VOIDmode, whereas the latter is BLKmode;
information about the inlined function can be taken from the lexical block
encoded in the INSN_LOCATION. These DEBUG_INSNs, that do not carry VAR_
LOCATION information, just DEBUG_MARKERs, can be detected by testing DEBUG_
MARKER_INSN_P, whereas those that do can be recognized as DEBUG_BIND_INSN_
P.

Throughout optimization passes, DEBUG_INSNs are not reordered with respect
to each other, particularly during scheduling. Binding information is kept in
pseudo-instruction form, so that, unlike notes, it gets the same treatment and
adjustments that regular instructions would. It is the variable tracking pass that
turns these pseudo-instructions into NOTE_INSN_VAR_LOCATION, NOTE_INSN_
BEGIN_STMT and NOTE_INSN_INLINE_ENTRY notes, analyzing control flow, value
equivalences and changes to registers and memory referenced in value expres-
sions, propagating the values of debug temporaries and determining expressions
that can be used to compute the value of each user variable at as many points
(ranges, actually) in the program as possible.



Chapter 14: RTL Representation 309

Unlike NOTE_INSN_VAR_LOCATION, the value expression in an INSN_VAR_
LOCATION denotes a value at that specific point in the program, rather than
an expression that can be evaluated at any later point before an overriding
VAR_LOCATION is encountered. E.g., if a user variable is bound to a REG
and then a subsequent insn modifies the REG, the note location would keep
mapping the user variable to the register across the insn, whereas the insn
location would keep the variable bound to the value, so that the variable
tracking pass would emit another location note for the variable at the point in
which the register is modified.

The machine mode of an insn is normally VOIDmode, but some phases use the mode for
various purposes.

The common subexpression elimination pass sets the mode of an insn to QImode when it
is the first insn in a block that has already been processed.

The second Haifa scheduling pass, for targets that can multiple issue, sets the mode of
an insn to TImode when it is believed that the instruction begins an issue group. That is,
when the instruction cannot issue simultaneously with the previous. This may be relied on
by later passes, in particular machine-dependent reorg.

Here is a table of the extra fields of insn, jump_insn and call_insn insns:

PATTERN (i)

An expression for the side effect performed by this insn. This must be one of the
following codes: set, call, use, clobber, return, simple_return, asm_input,
asm_output, addr_vec, addr_diff_vec, trap_if, unspec, unspec_volatile,
parallel, cond_exec, or sequence. If it is a parallel, each element of the
parallel must be one these codes, except that parallel expressions cannot be
nested and addr_vec and addr_diff_vec are not permitted inside a parallel
expression.

INSN_CODE (i)
An integer that says which pattern in the machine description matches this
insn, or —1 if the matching has not yet been attempted.

Such matching is never attempted and this field remains —1 on an insn whose
pattern consists of a single use, clobber, asm_input, addr_vec or addr_diff_
vec expression.

Matching is also never attempted on insns that result from an asm state-
ment. These contain at least one asm_operands expression. The function
asm_noperands returns a non-negative value for such insns.

In the debugging output, this field is printed as a number followed by a symbolic
representation that locates the pattern in the ‘md’ file as some small positive or
negative offset from a named pattern.

LOG_LINKS (i)
A list (chain of insn_list expressions) giving information about dependencies
between instructions within a basic block. Neither a jump nor a label may
come between the related insns. These are only used by the schedulers and by
combine. This is a deprecated data structure. Def-use and use-def chains are
now preferred.



310 GNU Compiler Collection (GCC) Internals

REG_NOTES (1)
A list (chain of expr_list, insn_list and int_list expressions) giving mis-
cellaneous information about the insn. It is often information pertaining to the
registers used in this insn.

The LOG_LINKS field of an insn is a chain of insn_list expressions. Each of these has two
operands: the first is an insn, and the second is another insn_list expression (the next one
in the chain). The last insn_list in the chain has a null pointer as second operand. The
significant thing about the chain is which insns appear in it (as first operands of insn_list
expressions). Their order is not significant.

This list is originally set up by the flow analysis pass; it is a null pointer until then. Flow
only adds links for those data dependencies which can be used for instruction combination.
For each insn, the flow analysis pass adds a link to insns which store into registers values
that are used for the first time in this insn.

The REG_NOTES field of an insn is a chain similar to the LOG_LINKS field but it includes
expr_list and int_list expressions in addition to insn_list expressions. There are
several kinds of register notes, which are distinguished by the machine mode, which in a
register note is really understood as being an enum reg_note. The first operand op of the
note is data whose meaning depends on the kind of note.

The macro REG_NOTE_KIND (x) returns the kind of register note. Its counterpart, the
macro PUT_REG_NOTE_KIND (x, newkind) sets the register note type of x to be newkind.

Register notes are of three classes: They may say something about an input to an insn,
they may say something about an output of an insn, or they may create a linkage between
two insns. There are also a set of values that are only used in LOG_LINKS.

These register notes annotate inputs to an insn:

REG_DEAD The value in op dies in this insn; that is to say, altering the value immediately
after this insn would not affect the future behavior of the program.

It does not follow that the register op has no useful value after this insn since
op is not necessarily modified by this insn. Rather, no subsequent instruction
uses the contents of op.

REG_UNUSED
The register op being set by this insn will not be used in a subsequent insn.
This differs from a REG_DEAD note, which indicates that the value in an input
will not be used subsequently. These two notes are independent; both may be
present for the same register.

REG_INC  The register op is incremented (or decremented; at this level there is no dis-
tinction) by an embedded side effect inside this insn. This means it appears in
a post_inc, pre_inc, post_dec or pre_dec expression.

REG_NONNEG
The register op is known to have a nonnegative value when this insn is reached.
This is used by special looping instructions that terminate when the register
goes negative.

The REG_NONNEG note is added only to ‘doloop_end’ insns, if its pattern uses a
ge condition.



Chapter 14: RTL Representation 311

REG_LABEL_

REG_LABEL_

REG_SETJMP

OPERAND

This insn uses op, a code_label or a note of type NOTE_INSN_DELETED_LABEL,
but is not a jump_insn, or it is a jump_insn that refers to the operand as an
ordinary operand. The label may still eventually be a jump target, but if so in
an indirect jump in a subsequent insn. The presence of this note allows jump
optimization to be aware that op is, in fact, being used, and flow optimization
to build an accurate flow graph.

TARGET

This insn is a jump_insn but not an addr_vec or addr_diff_vec. It uses op,
a code_label as a direct or indirect jump target. Its purpose is similar to
that of REG_LABEL_OPERAND. This note is only present if the insn has multiple
targets; the last label in the insn (in the highest numbered insn-field) goes
into the JUMP_LABEL field and does not have a REG_LABEL_TARGET note. See
Section 14.19 [Insns|, page 304.

Appears attached to each CALL_INSN to setjmp or a related function.

The following notes describe attributes of outputs of an insn:

REG_EQUIV
REG_EQUAL

This note is only valid on an insn that sets only one register and indicates that
that register will be equal to op at run time; the scope of this equivalence differs
between the two types of notes. The value which the insn explicitly copies into
the register may look different from op, but they will be equal at run time. If
the output of the single set is a strict_low_part or zero_extract expression,
the note refers to the register that is contained in its first operand.

For REG_EQUIV, the register is equivalent to op throughout the entire function,
and could validly be replaced in all its occurrences by op. (“Validly” here refers
to the data flow of the program; simple replacement may make some insns
invalid.) For example, when a constant is loaded into a register that is never
assigned any other value, this kind of note is used.

When a parameter is copied into a pseudo-register at entry to a function, a note
of this kind records that the register is equivalent to the stack slot where the
parameter was passed. Although in this case the register may be set by other
insns, it is still valid to replace the register by the stack slot throughout the
function.

A REG_EQUIV note is also used on an instruction which copies a register param-
eter into a pseudo-register at entry to a function, if there is a stack slot where
that parameter could be stored. Although other insns may set the pseudo-
register, it is valid for the compiler to replace the pseudo-register by stack slot
throughout the function, provided the compiler ensures that the stack slot is
properly initialized by making the replacement in the initial copy instruction as
well. This is used on machines for which the calling convention allocates stack
space for register parameters. See REG_PARM_STACK_SPACE in Section 18.9.6
[Stack Arguments|, page 534.



312 GNU Compiler Collection (GCC) Internals

In the case of REG_EQUAL, the register that is set by this insn will be equal
to op at run time at the end of this insn but not necessarily elsewhere in the
function. In this case, op is typically an arithmetic expression. For example,
when a sequence of insns such as a library call is used to perform an arithmetic
operation, this kind of note is attached to the insn that produces or copies the
final value.

These two notes are used in different ways by the compiler passes. REG_EQUAL
is used by passes prior to register allocation (such as common subexpression
elimination and loop optimization) to tell them how to think of that value.
REG_EQUIV notes are used by register allocation to indicate that there is an
available substitute expression (either a constant or a mem expression for the
location of a parameter on the stack) that may be used in place of a register if
insufficient registers are available.

Except for stack homes for parameters, which are indicated by a REG_EQUIV note
and are not useful to the early optimization passes and pseudo registers that
are equivalent to a memory location throughout their entire life, which is not
detected until later in the compilation, all equivalences are initially indicated
by an attached REG_EQUAL note. In the early stages of register allocation, a
REG_EQUAL note is changed into a REG_EQUIV note if op is a constant and the
insn represents the only set of its destination register.

Thus, compiler passes prior to register allocation need only check for REG_
EQUAL notes and passes subsequent to register allocation need only check for
REG_EQUIV notes.

These notes describe linkages between insns. They occur in pairs: one insn has one of a
pair of notes that points to a second insn, which has the inverse note pointing back to the
first insn.

REG_CC_SETTER

REG_CC_USER
On machines that use ccO, the insns which set and use ccO set and use ccO are
adjacent. However, when branch delay slot filling is done, this may no longer
be true. In this case a REG_CC_USER note will be placed on the insn setting ccO
to point to the insn using ccO and a REG_CC_SETTER note will be placed on the
insn using ccO to point to the insn setting ccO.

These values are only used in the LOG_LINKS field, and indicate the type of dependency
that each link represents. Links which indicate a data dependence (a read after write
dependence) do not use any code, they simply have mode V0IDmode, and are printed without
any descriptive text.

REG_DEP_TRUE
This indicates a true dependence (a read after write dependence).

REG_DEP_QUTPUT
This indicates an output dependence (a write after write dependence).

REG_DEP_ANTT
This indicates an anti dependence (a write after read dependence).



Chapter 14: RTL Representation 313

These notes describe information gathered from gcov profile data. They are stored in the
REG_NOTES field of an insn.

REG_BR_PROB
This is used to specify the ratio of branches to non-branches of a branch insn
according to the profile data. The note is represented as an int_list expression
whose integer value is an encoding of profile_probability type. profile_
probability provide member function from_reg_br_prob_note and to_reg_
br_prob_note to extract and store the probability into the RTL encoding.

REG_BR_PRED
These notes are found in JUMP insns after delayed branch scheduling has taken
place. They indicate both the direction and the likelihood of the JUMP. The
format is a bitmask of ATTR_FLAG_* values.

REG_FRAME_RELATED_EXPR
This is used on an RTX_FRAME_RELATED_P insn wherein the attached ex-
pression is used in place of the actual insn pattern. This is done in cases where
the pattern is either complex or misleading.

The note REG_CALL_NOCF_CHECK is used in conjunction with the ‘-fcf-protection=branch’ll
option. The note is set if a nocf_check attribute is specified for a function type or a
pointer to function type. The note is stored in the REG_NOTES field of an insn.

REG_CALL_NOCF_CHECK
Users have control through the nocf_check attribute to identify which calls to a
function should be skipped from control-flow instrumentation when the option
‘~fcf-protection=branch’ is specified. The compiler puts a REG_CALL_NOCF_
CHECK note on each CALL_INSN instruction that has a function type marked
with a nocf_check attribute.

For convenience, the machine mode in an insn_list or expr_list is printed using these
symbolic codes in debugging dumps.

The only difference between the expression codes insn_list and expr_list is that the
first operand of an insn_list is assumed to be an insn and is printed in debugging dumps
as the insn’s unique id; the first operand of an expr_list is printed in the ordinary way as
an expression.

14.20 RTL Representation of Function-Call Insns

Insns that call subroutines have the RTL expression code call_insn. These insns must
satisfy special rules, and their bodies must use a special RTL expression code, call.
A call expression has two operands, as follows:
(call (mem:fm addr) nbytes)

Here nbytes is an operand that represents the number of bytes of argument data being
passed to the subroutine, fm is a machine mode (which must equal as the definition of the
FUNCTION_MODE macro in the machine description) and addr represents the address of the
subroutine.

For a subroutine that returns no value, the call expression as shown above is the entire
body of the insn, except that the insn might also contain use or clobber expressions.



314 GNU Compiler Collection (GCC) Internals

For a subroutine that returns a value whose mode is not BLKmode, the value is returned
in a hard register. If this register’s number is r, then the body of the call insn looks like
this:

(set (reg:m r)
(call (mem:fm addr) nbytes))
This RTL expression makes it clear (to the optimizer passes) that the appropriate register
receives a useful value in this insn.

When a subroutine returns a BLKmode value, it is handled by passing to the subroutine
the address of a place to store the value. So the call insn itself does not “return” any value,
and it has the same RTL form as a call that returns nothing.

On some machines, the call instruction itself clobbers some register, for example to contain
the return address. call_insn insns on these machines should have a body which is a
parallel that contains both the call expression and clobber expressions that indicate
which registers are destroyed. Similarly, if the call instruction requires some register other
than the stack pointer that is not explicitly mentioned in its RTL, a use subexpression
should mention that register.

Functions that are called are assumed to modify all registers listed in the configuration
macro CALL_USED_REGISTERS (see Section 18.7.1 [Register Basics|, page 505) and, with the
exception of const functions and library calls, to modify all of memory.

Insns containing just use expressions directly precede the call_insn insn to indicate
which registers contain inputs to the function. Similarly, if registers other than those
in CALL_USED_REGISTERS are clobbered by the called function, insns containing a single
clobber follow immediately after the call to indicate which registers.

14.21 Structure Sharing Assumptions

The compiler assumes that certain kinds of RTL expressions are unique; there do not exist
two distinct objects representing the same value. In other cases, it makes an opposite
assumption: that no RTL expression object of a certain kind appears in more than one
place in the containing structure.

These assumptions refer to a single function; except for the RTL objects that describe
global variables and external functions, and a few standard objects such as small integer
constants, no RTL objects are common to two functions.

e FEach pseudo-register has only a single reg object to represent it, and therefore only a
single machine mode.

e For any symbolic label, there is only one symbol_ref object referring to it.
e All const_int expressions with equal values are shared.

e All const_poly_int expressions with equal modes and values are shared.
e There is only one pc expression.

e There is only one ccO expression.

e There is only one const_double expression with value 0 for each floating point mode.
Likewise for values 1 and 2.

e There is only one const_vector expression with value 0 for each vector mode, be it
an integer or a double constant vector.



Chapter 14: RTL Representation 315

e No label_ref or scratch appears in more than one place in the RTL structure; in
other words, it is safe to do a tree-walk of all the insns in the function and assume that
each time a label_ref or scratch is seen it is distinct from all others that are seen.

e Only one mem object is normally created for each static variable or stack slot, so these
objects are frequently shared in all the places they appear. However, separate but equal
objects for these variables are occasionally made.

e When a single asm statement has multiple output operands, a distinct asm_operands
expression is made for each output operand. However, these all share the vector which
contains the sequence of input operands. This sharing is used later on to test whether
two asm_operands expressions come from the same statement, so all optimizations
must carefully preserve the sharing if they copy the vector at all.

e No RTL object appears in more than one place in the RTL structure except as described
above. Many passes of the compiler rely on this by assuming that they can modify
RTL objects in place without unwanted side-effects on other insns.

e During initial RTL generation, shared structure is freely introduced. After all the RTL
for a function has been generated, all shared structure is copied by unshare_all_rtl
in ‘emit-rtl.c’, after which the above rules are guaranteed to be followed.

e During the combiner pass, shared structure within an insn can exist temporarily. How-
ever, the shared structure is copied before the combiner is finished with the insn. This
is done by calling copy_rtx_if_shared, which is a subroutine of unshare_all_rt1.

14.22 Reading RTL

To read an RTL object from a file, call read_rtx. It takes one argument, a stdio stream,
and returns a single RTL object. This routine is defined in ‘read-rtl.c’. It is not available
in the compiler itself, only the various programs that generate the compiler back end from
the machine description.

People frequently have the idea of using RTL stored as text in a file as an interface
between a language front end and the bulk of GCC. This idea is not feasible.

GCC was designed to use RTL internally only. Correct RTL for a given program is
very dependent on the particular target machine. And the RTL does not contain all the
information about the program.

The proper way to interface GCC to a new language front end is with the “tree” data
structure, described in the files ‘tree.h’ and ‘tree.def’. The documentation for this struc-
ture (see Chapter 11 [GENERIC], page 161) is incomplete.






Chapter 15: Control Flow Graph 317

15 Control Flow Graph

A control flow graph (CFG) is a data structure built on top of the intermediate code
representation (the RTL or GIMPLE instruction stream) abstracting the control flow behavior
of a function that is being compiled. The CFG is a directed graph where the vertices
represent basic blocks and edges represent possible transfer of control flow from one basic
block to another. The data structures used to represent the control flow graph are defined
in ‘basic-block.h’.

In GCC, the representation of control flow is maintained throughout the compilation
process, from constructing the CFG early in pass_build_cfg to pass_free_cfg (see
‘passes.def’). The CFG takes various different modes and may undergo extensive
manipulations, but the graph is always valid between its construction and its release. This
way, transfer of information such as data flow, a measured profile, or the loop tree, can be
propagated through the passes pipeline, and even from GIMPLE to RTL.

Often the CFG may be better viewed as integral part of instruction chain, than structure
built on the top of it. Updating the compiler’s intermediate representation for instructions
cannot be easily done without proper maintenance of the CFG simultaneously.

15.1 Basic Blocks

A basic block is a straight-line sequence of code with only one entry point and only one
exit. In GCC, basic blocks are represented using the basic_block data type.

Special basic blocks represent possible entry and exit points of a function. These blocks
are called ENTRY_BLOCK_PTR and EXIT_BLOCK_PTR. These blocks do not contain any code.

The BASIC_BLOCK array contains all basic blocks in an unspecified order. Each basic_
block structure has a field that holds a unique integer identifier index that is the index of
the block in the BASIC_BLOCK array. The total number of basic blocks in the function is
n_basic_blocks. Both the basic block indices and the total number of basic blocks may
vary during the compilation process, as passes reorder, create, duplicate, and destroy basic
blocks. The index for any block should never be greater than last_basic_block. The
indices 0 and 1 are special codes reserved for ENTRY_BLOCK and EXIT_BLOCK, the indices of
ENTRY_BLOCK_PTR and EXIT_BLOCK_PTR.

Two pointer members of the basic_block structure are the pointers next_bb and prev_
bb. These are used to keep doubly linked chain of basic blocks in the same order as the
underlying instruction stream. The chain of basic blocks is updated transparently by the
provided API for manipulating the CFG. The macro FOR_EACH_BB can be used to visit all
the basic blocks in lexicographical order, except ENTRY_BLOCK and EXIT_BLOCK. The macro
FOR_ALL_BB also visits all basic blocks in lexicographical order, including ENTRY_BLOCK and
EXIT_BLOCK.

The functions post_order_compute and inverted_post_order_compute can be used
to compute topological orders of the CFG. The orders are stored as vectors of basic block
indices. The BASIC_BLOCK array can be used to iterate each basic block by index. Dominator
traversals are also possible using walk_dominator_tree. Given two basic blocks A and B,
block A dominates block B if A is always executed before B.

Each basic_block also contains pointers to the first instruction (the head) and the last
instruction (the tail) or end of the instruction stream contained in a basic block. In fact,



318 GNU Compiler Collection (GCC) Internals

since the basic_block data type is used to represent blocks in both major intermediate
representations of GCC (GIMPLE and RTL), there are pointers to the head and end of a
basic block for both representations, stored in intermediate representation specific data in
the il field of struct basic_block_def.

For RTL, these pointers are BB_HEAD and BB_END.

In the RTL representation of a function, the instruction stream contains not only the
“real” instructions, but also notes or insn notes (to distinguish them from reg notes). Any
function that moves or duplicates the basic blocks needs to take care of updating of these
notes. Many of these notes expect that the instruction stream consists of linear regions, so
updating can sometimes be tedious. All types of insn notes are defined in ‘insn-notes.def’.

In the RTL function representation, the instructions contained in a basic block always
follow a NOTE_INSN_BASIC_BLOCK, but zero or more CODE_LABEL nodes can precede the
block note. A basic block ends with a control flow instruction or with the last instruction
before the next CODE_LABEL or NOTE_INSN_BASIC_BLOCK. By definition, a CODE_LABEL
cannot appear in the middle of the instruction stream of a basic block.

In addition to notes, the jump table vectors are also represented as “pseudo-instructions”
inside the insn stream. These vectors never appear in the basic block and should always be
placed just after the table jump instructions referencing them. After removing the table-
jump it is often difficult to eliminate the code computing the address and referencing the
vector, so cleaning up these vectors is postponed until after liveness analysis. Thus the
jump table vectors may appear in the insn stream unreferenced and without any purpose.
Before any edge is made fall-thru, the existence of such construct in the way needs to be
checked by calling can_fallthru function.

For the GIMPLE representation, the PHI nodes and statements contained in a basic block
are in a gimple_seq pointed to by the basic block intermediate language specific pointers.
Abstract containers and iterators are used to access the PHI nodes and statements in a
basic blocks. These iterators are called GIMPLE statement iterators (GSIs). Grep for “gsi
in the various ‘gimple-*’ and ‘tree-*’ files. There is a gimple_stmt_iterator type for
iterating over all kinds of statement, and a gphi_iterator subclass for iterating over PHI
nodes. The following snippet will pretty-print all PHI nodes the statements of the current
function in the GIMPLE representation.

basic_block bb;

FOR_EACH_BB (bb)
{
gphi_iterator pi;
gimple_stmt_iterator si;

for (pi = gsi_start_phis (bb); !gsi_end_p (pi); gsi_next (&pi))
{
gphi *phi = pi.phi Q;
print_gimple_stmt (dump_file, phi, O, TDF_SLIM);
}
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple stmt = gsi_stmt (si);
print_gimple_stmt (dump_file, stmt, O, TDF_SLIM);
}



Chapter 15: Control Flow Graph 319

15.2 Edges

FEdges represent possible control flow transfers from the end of some basic block A to the
head of another basic block B. We say that A is a predecessor of B, and B is a successor
of A. Edges are represented in GCC with the edge data type. Each edge acts as a link
between two basic blocks: The src member of an edge points to the predecessor basic block
of the dest basic block. The members preds and succs of the basic_block data type
point to type-safe vectors of edges to the predecessors and successors of the block.

When walking the edges in an edge vector, edge iterators should be used. Edge iterators
are constructed using the edge_iterator data structure and several methods are available
to operate on them:

ei_start This function initializes an edge_iterator that points to the first edge in a
vector of edges.

ei_last  This function initializes an edge_iterator that points to the last edge in a
vector of edges.

ei_end_p This predicate is true if an edge_iterator represents the last edge in an edge
vector.

ei_one_before_end_p
This predicate is true if an edge_iterator represents the second last edge in
an edge vector.

ei_next  This function takes a pointer to an edge_iterator and makes it point to the
next edge in the sequence.

ei_prev  This function takes a pointer to an edge_iterator and makes it point to the
previous edge in the sequence.

ei_edge  This function returns the edge currently pointed to by an edge_iterator.

ei_safe_safe
This function returns the edge currently pointed to by an edge_iterator,
but returns NULL if the iterator is pointing at the end of the sequence. This
function has been provided for existing code makes the assumption that a NULL
edge indicates the end of the sequence.

The convenience macro FOR_EACH_EDGE can be used to visit all of the edges in a sequence
of predecessor or successor edges. It must not be used when an element might be removed
during the traversal, otherwise elements will be missed. Here is an example of how to use
the macro:

edge e;
edge_iterator ei;

FOR_EACH_EDGE (e, ei, bb->succs)
{
if (e—>flags & EDGE_FALLTHRU)
break;
}

There are various reasons why control flow may transfer from one block to another. One
possibility is that some instruction, for example a CODE_LABEL, in a linearized instruction



320

GNU Compiler Collection (GCC) Internals

stream just always starts a new basic block. In this case a fall-thru edge links the basic
block to the first following basic block. But there are several other reasons why edges may
be created. The flags field of the edge data type is used to store information about the
type of edge we are dealing with. Each edge is of one of the following types:

Jump

fall-thru

No type flags are set for edges corresponding to jump instructions. These edges
are used for unconditional or conditional jumps and in RTL also for table jumps.
They are the easiest to manipulate as they may be freely redirected when the
flow graph is not in SSA form.

Fall-thru edges are present in case where the basic block may continue exe-
cution to the following one without branching. These edges have the EDGE_
FALLTHRU flag set. Unlike other types of edges, these edges must come into
the basic block immediately following in the instruction stream. The function
force_nonfallthru is available to insert an unconditional jump in the case
that redirection is needed. Note that this may require creation of a new basic
block.

exception handling

stbling calls

Exception handling edges represent possible control transfers from a trapping
instruction to an exception handler. The definition of “trapping” varies. In
C++, only function calls can throw, but for Ada exceptions like division by zero
or segmentation fault are defined and thus each instruction possibly throwing
this kind of exception needs to be handled as control flow instruction. Exception
edges have the EDGE_ABNORMAL and EDGE_EH flags set.

When updating the instruction stream it is easy to change possibly trapping
instruction to non-trapping, by simply removing the exception edge. The op-
posite conversion is difficult, but should not happen anyway. The edges can be
eliminated via purge_dead_edges call.

In the RTL representation, the destination of an exception edge is specified by
REG_EH_REGION note attached to the insn. In case of a trapping call the EDGE_
ABNORMAL _CALL flag is set too. In the GIMPLE representation, this extra flag is
not set.

In the RTL representation, the predicate may_trap_p may be used to check
whether instruction still may trap or not. For the tree representation, the
tree_could_trap_p predicate is available, but this predicate only checks for
possible memory traps, as in dereferencing an invalid pointer location.

Sibling calls or tail calls terminate the function in a non-standard way and thus
an edge to the exit must be present. EDGE_SIBCALL and EDGE_ABNORMAL are
set in such case. These edges only exist in the RTL representation.

computed jumps

Computed jumps contain edges to all labels in the function referenced from
the code. All those edges have EDGE_ABNORMAL flag set. The edges used to
represent computed jumps often cause compile time performance problems,
since functions consisting of many taken labels and many computed jumps may
have very dense flow graphs, so these edges need to be handled with special



Chapter 15: Control Flow Graph 321

care. During the earlier stages of the compilation process, GCC tries to avoid
such dense flow graphs by factoring computed jumps. For example, given the
following series of jumps,

goto *x;

[...1]

goto *Xx;

[...]

goto *x;

[...]
factoring the computed jumps results in the following code sequence which has
a much simpler flow graph:

goto y;
[...1

goto y;
[...1

goto y;
[...]

y:
goto *Xx;
However, the classic problem with this transformation is that it has a runtime
cost in there resulting code: An extra jump. Therefore, the computed jumps
are un-factored in the later passes of the compiler (in the pass called pass_
duplicate_computed_gotos). Be aware of that when you work on passes in
that area. There have been numerous examples already where the compile time
for code with unfactored computed jumps caused some serious headaches.

nonlocal goto handlers
GCC allows nested functions to return into caller using a goto to a label passed
to as an argument to the callee. The labels passed to nested functions contain
special code to cleanup after function call. Such sections of code are referred to
as “nonlocal goto receivers”. If a function contains such nonlocal goto receivers,
an edge from the call to the label is created with the EDGE_ABNORMAL and EDGE_
ABNORMAL_CALL flags set.

function entry points

By definition, execution of function starts at basic block 0, so there is always
an edge from the ENTRY_BLOCK_PTR to basic block 0. There is no GIMPLE
representation for alternate entry points at this moment. In RTL, alternate
entry points are specified by CODE_LABEL with LABEL_ALTERNATE_NAME defined.
This feature is currently used for multiple entry point prologues and is limited
to post-reload passes only. This can be used by back-ends to emit alternate
prologues for functions called from different contexts. In future full support for
multiple entry functions defined by Fortran 90 needs to be implemented.

function exits
In the pre-reload representation a function terminates after the last instruction
in the insn chain and no explicit return instructions are used. This corresponds



322 GNU Compiler Collection (GCC) Internals

to the fall-thru edge into exit block. After reload, optimal RTL epilogues are
used that use explicit (conditional) return instructions that are represented by
edges with no flags set.

15.3 Profile information

In many cases a compiler must make a choice whether to trade speed in one part of code
for speed in another, or to trade code size for code speed. In such cases it is useful to know
information about how often some given block will be executed. That is the purpose for
maintaining profile within the flow graph. GCC can handle profile information obtained
through profile feedback, but it can also estimate branch probabilities based on statics and
heuristics.

The feedback based profile is produced by compiling the program with instrumentation,
executing it on a train run and reading the numbers of executions of basic blocks and edges
back to the compiler while re-compiling the program to produce the final executable. This
method provides very accurate information about where a program spends most of its time
on the train run. Whether it matches the average run of course depends on the choice
of train data set, but several studies have shown that the behavior of a program usually
changes just marginally over different data sets.

When profile feedback is not available, the compiler may be asked to attempt to predict
the behavior of each branch in the program using a set of heuristics (see ‘predict.def’
for details) and compute estimated frequencies of each basic block by propagating the
probabilities over the graph.

FEach basic_block contains two integer fields to represent profile information: frequency
and count. The frequency is an estimation how often is basic block executed within a
function. It is represented as an integer scaled in the range from 0 to BB_FREQ_BASE. The
most frequently executed basic block in function is initially set to BB_FREQ_BASE and the
rest of frequencies are scaled accordingly. During optimization, the frequency of the most
frequent basic block can both decrease (for instance by loop unrolling) or grow (for instance
by cross-jumping optimization), so scaling sometimes has to be performed multiple times.

The count contains hard-counted numbers of execution measured during training runs
and is nonzero only when profile feedback is available. This value is represented as the
host’s widest integer (typically a 64 bit integer) of the special type gcov_type.

Most optimization passes can use only the frequency information of a basic block, but a
few passes may want to know hard execution counts. The frequencies should always match
the counts after scaling, however during updating of the profile information numerical error
may accumulate into quite large errors.

Each edge also contains a branch probability field: an integer in the range from 0 to
REG_BR_PROB_BASE. It represents probability of passing control from the end of the src
basic block to the dest basic block, i.e. the probability that control will flow along this
edge. The EDGE_FREQUENCY macro is available to compute how frequently a given edge is
taken. There is a count field for each edge as well, representing same information as for a
basic block.

The basic block frequencies are not represented in the instruction stream, but in the RTL
representation the edge frequencies are represented for conditional jumps (via the REG_BR_



Chapter 15: Control Flow Graph 323

PROB macro) since they are used when instructions are output to the assembly file and the
flow graph is no longer maintained.

The probability that control flow arrives via a given edge to its destination basic block
is called reverse probability and is not directly represented, but it may be easily computed
from frequencies of basic blocks.

Updating profile information is a delicate task that can unfortunately not be easily in-
tegrated with the CFG manipulation API. Many of the functions and hooks to modify
the CFG, such as redirect_edge_and_branch, do not have enough information to easily
update the profile, so updating it is in the majority of cases left up to the caller. It is
difficult to uncover bugs in the profile updating code, because they manifest themselves
only by producing worse code, and checking profile consistency is not possible because of
numeric error accumulation. Hence special attention needs to be given to this issue in each
pass that modifies the CFG.

It is important to point out that REG_BR_PROB_BASE and BB_FREQ_BASE are both set low
enough to be possible to compute second power of any frequency or probability in the flow
graph, it is not possible to even square the count field, as modern CPUs are fast enough to
execute $2°32$ operations quickly.

15.4 Maintaining the CFG

An important task of each compiler pass is to keep both the control flow graph and all profile
information up-to-date. Reconstruction of the control flow graph after each pass is not an
option, since it may be very expensive and lost profile information cannot be reconstructed
at all.

GCC has two major intermediate representations, and both use the basic_block and
edge data types to represent control flow. Both representations share as much of the CFG
maintenance code as possible. For each representation, a set of hooks is defined so that
each representation can provide its own implementation of CFG manipulation routines when
necessary. These hooks are defined in ‘cfghooks.h’. There are hooks for almost all common
CFG manipulations, including block splitting and merging, edge redirection and creating
and deleting basic blocks. These hooks should provide everything you need to maintain and
manipulate the CFG in both the RTL and GIMPLE representation.

At the moment, the basic block boundaries are maintained transparently when modifying
instructions, so there rarely is a need to move them manually (such as in case someone wants
to output instruction outside basic block explicitly).

In the RTL representation, each instruction has a BLOCK_FOR_INSN value that represents
pointer to the basic block that contains the instruction. In the GIMPLE representation, the
function gimple_bb returns a pointer to the basic block containing the queried statement.

When changes need to be applied to a function in its GIMPLE representation, GIMPLE
statement iterators should be used. These iterators provide an integrated abstraction of
the flow graph and the instruction stream. Block statement iterators are constructed using
the gimple_stmt_iterator data structure and several modifiers are available, including
the following:

gsi_start
This function initializes a gimple_stmt_iterator that points to the first non-
empty statement in a basic block.



324 GNU Compiler Collection (GCC) Internals

gsi_last This function initializes a gimple_stmt_iterator that points to the last state-
ment in a basic block.

gsi_end_p
This predicate is true if a gimple_stmt_iterator represents the end of a basic
block.

gsi_next This function takes a gimple_stmt_iterator and makes it point to its succes-
sor.

gsi_prev This function takes a gimple_stmt_iterator and makes it point to its prede-
Cessor.

gsi_insert_after
This function inserts a statement after the gimple_stmt_iterator passed in.
The final parameter determines whether the statement iterator is updated to
point to the newly inserted statement, or left pointing to the original statement.

gsi_insert_before
This function inserts a statement before the gimple_stmt_iterator passed in.
The final parameter determines whether the statement iterator is updated to
point to the newly inserted statement, or left pointing to the original statement.

gsi_remove
This function removes the gimple_stmt_iterator passed in and rechains the
remaining statements in a basic block, if any.

In the RTL representation, the macros BB_HEAD and BB_END may be used to get the head
and end rtx of a basic block. No abstract iterators are defined for traversing the insn chain,
but you can just use NEXT_INSN and PREV_INSN instead. See Section 14.19 [Insns], page 304.

Usually a code manipulating pass simplifies the instruction stream and the flow of control,
possibly eliminating some edges. This may for example happen when a conditional jump
is replaced with an unconditional jump. Updating of edges is not transparent and each
optimization pass is required to do so manually. However only few cases occur in practice.
The pass may call purge_dead_edges on a given basic block to remove superfluous edges,
if any.

Another common scenario is redirection of branch instructions, but this is best modeled as
redirection of edges in the control flow graph and thus use of redirect_edge_and_branch is
preferred over more low level functions, such as redirect_jump that operate on RTL chain
only. The CFG hooks defined in ‘cfghooks.h’ should provide the complete API required
for manipulating and maintaining the CFG.

It is also possible that a pass has to insert control flow instruction into the middle of a
basic block, thus creating an entry point in the middle of the basic block, which is impossible
by definition: The block must be split to make sure it only has one entry point, i.e. the
head of the basic block. The CFG hook split_block may be used when an instruction in
the middle of a basic block has to become the target of a jump or branch instruction.

For a global optimizer, a common operation is to split edges in the flow graph and
insert instructions on them. In the RTL representation, this can be easily done using the
insert_insn_on_edge function that emits an instruction “on the edge”, caching it for a
later commit_edge_insertions call that will take care of moving the inserted instructions



Chapter 15: Control Flow Graph 325

off the edge into the instruction stream contained in a basic block. This includes the
creation of new basic blocks where needed. In the GIMPLE representation, the equivalent
functions are gsi_insert_on_edge which inserts a block statement iterator on an edge,
and gsi_commit_edge_inserts which flushes the instruction to actual instruction stream.

While debugging the optimization pass, the verify_flow_info function may be useful
to find bugs in the control flow graph updating code.

15.5 Liveness information

Liveness information is useful to determine whether some register is “live” at given point
of program, i.e. that it contains a value that may be used at a later point in the program.
This information is used, for instance, during register allocation, as the pseudo registers
only need to be assigned to a unique hard register or to a stack slot if they are live. The
hard registers and stack slots may be freely reused for other values when a register is dead.

Liveness information is available in the back end starting with pass_df_initialize and
ending with pass_df_finish. Three flavors of live analysis are available: With LR, it is
possible to determine at any point P in the function if the register may be used on some
path from P to the end of the function. With UR, it is possible to determine if there is a path
from the beginning of the function to P that defines the variable. LIVE is the intersection
of the LR and UR and a variable is live at P if there is both an assignment that reaches it
from the beginning of the function and a use that can be reached on some path from P to
the end of the function.

In general LIVE is the most useful of the three. The macros DF_[LR,UR,LIVE] _[IN,QUT]
can be used to access this information. The macros take a basic block number and return a
bitmap that is indexed by the register number. This information is only guaranteed to be
up to date after calls are made to df __analyze. See the file df-core.c for details on using
the dataflow.

The liveness information is stored partly in the RTL instruction stream and partly in the
flow graph. Local information is stored in the instruction stream: Each instruction may
contain REG_DEAD notes representing that the value of a given register is no longer needed,
or REG_UNUSED notes representing that the value computed by the instruction is never used.
The second is useful for instructions computing multiple values at once.






Chapter 16: Analysis and Representation of Loops 327

16 Analysis and Representation of Loops

GCC provides extensive infrastructure for work with natural loops, i.e., strongly connected
components of CFG with only one entry block. This chapter describes representation of
loops in GCC, both on GIMPLE and in RTL, as well as the interfaces to loop-related
analyses (induction variable analysis and number of iterations analysis).

16.1 Loop representation

This chapter describes the representation of loops in GCC, and functions that can be used
to build, modify and analyze this representation. Most of the interfaces and data structures
are declared in ‘cfgloop.h’. Loop structures are analyzed and this information disposed or
updated at the discretion of individual passes. Still most of the generic CFG manipulation
routines are aware of loop structures and try to keep them up-to-date. By this means an
increasing part of the compilation pipeline is setup to maintain loop structure across passes
to allow attaching meta information to individual loops for consumption by later passes.

In general, a natural loop has one entry block (header) and possibly several back edges
(latches) leading to the header from the inside of the loop. Loops with several latches may
appear if several loops share a single header, or if there is a branching in the middle of the
loop. The representation of loops in GCC however allows only loops with a single latch.
During loop analysis, headers of such loops are split and forwarder blocks are created in
order to disambiguate their structures. Heuristic based on profile information and structure
of the induction variables in the loops is used to determine whether the latches correspond
to sub-loops or to control flow in a single loop. This means that the analysis sometimes
changes the CFG, and if you run it in the middle of an optimization pass, you must be
able to deal with the new blocks. You may avoid CFG changes by passing LOOPS_MAY_
HAVE_MULTIPLE_LATCHES flag to the loop discovery, note however that most other loop
manipulation functions will not work correctly for loops with multiple latch edges (the
functions that only query membership of blocks to loops and subloop relationships, or
enumerate and test loop exits, can be expected to work).

Body of the loop is the set of blocks that are dominated by its header, and reachable from
its latch against the direction of edges in CFG. The loops are organized in a containment
hierarchy (tree) such that all the loops immediately contained inside loop L are the children
of L in the tree. This tree is represented by the struct loops structure. The root of this
tree is a fake loop that contains all blocks in the function. Each of the loops is represented
in a struct loop structure. Each loop is assigned an index (num field of the struct loop
structure), and the pointer to the loop is stored in the corresponding field of the larray
vector in the loops structure. The indices do not have to be continuous, there may be
empty (NULL) entries in the larray created by deleting loops. Also, there is no guarantee
on the relative order of a loop and its subloops in the numbering. The index of a loop never
changes.

The entries of the larray field should not be accessed directly. The function get_loop
returns the loop description for a loop with the given index. number_of_loops function
returns number of loops in the function. To traverse all loops, use FOR_EACH_LOOP macro.
The flags argument of the macro is used to determine the direction of traversal and the
set of loops visited. Each loop is guaranteed to be visited exactly once, regardless of the
changes to the loop tree, and the loops may be removed during the traversal. The newly



328 GNU Compiler Collection (GCC) Internals

created loops are never traversed, if they need to be visited, this must be done separately
after their creation.

Each basic block contains the reference to the innermost loop it belongs to (loop_father).
For this reason, it is only possible to have one struct loops structure initialized at the
same time for each CFG. The global variable current_loops contains the struct loops
structure. Many of the loop manipulation functions assume that dominance information is
up-to-date.

The loops are analyzed through loop_optimizer_init function. The argument of this
function is a set of flags represented in an integer bitmask. These flags specify what other
properties of the loop structures should be calculated /enforced and preserved later:

e LOOPS_MAY_HAVE_MULTIPLE_LATCHES: If this flag is set, no changes to CFG will be
performed in the loop analysis, in particular, loops with multiple latch edges will not
be disambiguated. If a loop has multiple latches, its latch block is set to NULL. Most
of the loop manipulation functions will not work for loops in this shape. No other flags
that require CFG changes can be passed to loop_optimizer_init.

e LOOPS_HAVE_PREHEADERS: Forwarder blocks are created in such a way that each loop
has only one entry edge, and additionally, the source block of this entry edge has only
one successor. This creates a natural place where the code can be moved out of the
loop, and ensures that the entry edge of the loop leads from its immediate super-loop.

e LOOPS_HAVE_SIMPLE_LATCHES: Forwarder blocks are created to force the latch block
of each loop to have only one successor. This ensures that the latch of the loop does
not belong to any of its sub-loops, and makes manipulation with the loops significantly
easier. Most of the loop manipulation functions assume that the loops are in this shape.
Note that with this flag, the “normal” loop without any control flow inside and with
one exit consists of two basic blocks.

e LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS: Basic blocks and edges in the strongly
connected components that are not natural loops (have more than one entry block) are
marked with BB_IRREDUCIBLE_LOOP and EDGE_IRREDUCIBLE_LOOP flags. The flag is
not set for blocks and edges that belong to natural loops that are in such an irreducible
region (but it is set for the entry and exit edges of such a loop, if they lead to/from
this region).

e LOOPS_HAVE_RECORDED_EXITS: The lists of exits are recorded and updated for each
loop. This makes some functions (e.g., get_loop_exit_edges) more efficient. Some
functions (e.g., single_exit) can be used only if the lists of exits are recorded.

These properties may also be computed/enforced later, using functions create_
preheaders, force_single_succ_latches, mark_irreducible_loops and
record_loop_exits. The properties can be queried using loops_state_satisfies_p.

The memory occupied by the loops structures should be freed with loop_optimizer_
finalize function. When loop structures are setup to be preserved across passes this
function reduces the information to be kept up-to-date to a minimum (only LOOPS_MAY_
HAVE_MULTIPLE_LATCHES Set).

The CFG manipulation functions in general do not update loop structures. Specialized
versions that additionally do so are provided for the most common tasks. On GIMPLE,
cleanup_tree_cfg_loop function can be used to cleanup CFG while updating the loops
structures if current_loops is set.



Chapter 16: Analysis and Representation of Loops 329

At the moment loop structure is preserved from the start of GIMPLE loop optimizations
until the end of RTL loop optimizations. During this time a loop can be tracked by its
struct loop and number.

16.2 Loop querying

The functions to query the information about loops are declared in ‘cfgloop.h’. Some of
the information can be taken directly from the structures. loop_father field of each basic
block contains the innermost loop to that the block belongs. The most useful fields of loop
structure (that are kept up-to-date at all times) are:

e header, latch: Header and latch basic blocks of the loop.

e num_nodes: Number of basic blocks in the loop (including the basic blocks of the
sub-loops).

e outer, inner, next: The super-loop, the first sub-loop, and the sibling of the loop in
the loops tree.

There are other fields in the loop structures, many of them used only by some of the passes,

or not updated during CFG changes; in general, they should not be accessed directly.
The most important functions to query loop structures are:

e loop_depth: The depth of the loop in the loops tree, i.e., the number of super-loops
of the loop.

e flow_loops_dump: Dumps the information about loops to a file.

e verify_loop_structure: Checks consistency of the loop structures.

e loop_latch_edge: Returns the latch edge of a loop.

e loop_preheader_edge: If loops have preheaders, returns the preheader edge of a loop.

e flow_loop_nested_p: Tests whether loop is a sub-loop of another loop.

e flow_bb_inside_loop_p: Tests whether a basic block belongs to a loop (including its
sub-loops).

e find_common_loop: Finds the common super-loop of two loops.

e superloop_at_depth: Returns the super-loop of a loop with the given depth.

e tree_num_loop_insns, num_loop_insns: Estimates the number of insns in the loop,
on GIMPLE and on RTL.

e loop_exit_edge_p: Tests whether edge is an exit from a loop.

e mark_loop_exit_edges: Marks all exit edges of all loops with EDGE_LOOP_EXIT flag.

e get_loop_body, get_loop_body_in_dom_order, get_loop_body_in_bfs_order:
Enumerates the basic blocks in the loop in depth-first search order in reversed CFG,
ordered by dominance relation, and breath-first search order, respectively.

e single_exit: Returns the single exit edge of the loop, or NULL if the loop has more than
one exit. You can only use this function if LOOPS_HAVE_MARKED_SINGLE_EXITS
property is used.

e get_loop_exit_edges: Enumerates the exit edges of a loop.

e just_once_each_iteration_p: Returns true if the basic block is executed exactly
once during each iteration of a loop (that is, it does not belong to a sub-loop, and it
dominates the latch of the loop).



330 GNU Compiler Collection (GCC) Internals

16.3 Loop manipulation

The loops tree can be manipulated using the following functions:
e flow_loop_tree_node_add: Adds a node to the tree.
e flow_loop_tree_node_remove: Removes a node from the tree.
e add_bb_to_loop: Adds a basic block to a loop.

e remove_bb_from_loops: Removes a basic block from loops.

Most low-level CFG functions update loops automatically. The following functions handle
some more complicated cases of CFG manipulations:

e remove_path: Removes an edge and all blocks it dominates.

e split_loop_exit_edge: Splits exit edge of the loop, ensuring that PHI node argu-
ments remain in the loop (this ensures that loop-closed SSA form is preserved). Only
useful on GIMPLE.

Finally, there are some higher-level loop transformations implemented. While some of
them are written so that they should work on non-innermost loops, they are mostly untested
in that case, and at the moment, they are only reliable for the innermost loops:

e create_iv: Creates a new induction variable. Only works on GIMPLE. standard_
iv_increment_position can be used to find a suitable place for the iv increment.

e duplicate_loop_to_header_edge, tree_duplicate_loop_to_header_edge: These
functions (on RTL and on GIMPLE) duplicate the body of the loop prescribed number
of times on one of the edges entering loop header, thus performing either loop unrolling
or loop peeling. can_duplicate_loop_p (can_unroll_loop_p on GIMPLE) must be
true for the duplicated loop.

e loop_version: This function creates a copy of a loop, and a branch before them
that selects one of them depending on the prescribed condition. This is useful for
optimizations that need to verify some assumptions in runtime (one of the copies of
the loop is usually left unchanged, while the other one is transformed in some way).

e tree_unroll_loop: Unrolls the loop, including peeling the extra iterations to make
the number of iterations divisible by unroll factor, updating the exit condition, and
removing the exits that now cannot be taken. Works only on GIMPLE.

16.4 Loop-closed SSA form

Throughout the loop optimizations on tree level, one extra condition is enforced on the
SSA form: No SSA name is used outside of the loop in that it is defined. The SSA form
satisfying this condition is called “loop-closed SSA form” — LCSSA. To enforce LCSSA,
PHI nodes must be created at the exits of the loops for the SSA names that are used outside
of them. Only the real operands (not virtual SSA names) are held in LCSSA, in order to
save memory.

There are various benefits of LCSSA:

e Many optimizations (value range analysis, final value replacement) are interested in
the values that are defined in the loop and used outside of it, i.e., exactly those for that
we create new PHI nodes.



Chapter 16: Analysis and Representation of Loops 331

e In induction variable analysis, it is not necessary to specify the loop in that the analysis
should be performed — the scalar evolution analysis always returns the results with
respect to the loop in that the SSA name is defined.

e [t makes updating of SSA form during loop transformations simpler. Without LCSSA,
operations like loop unrolling may force creation of PHI nodes arbitrarily far from
the loop, while in LCSSA, the SSA form can be updated locally. However, since we
only keep real operands in LCSSA, we cannot use this advantage (we could have local
updating of real operands, but it is not much more efficient than to use generic SSA
form updating for it as well; the amount of changes to SSA is the same).

However, it also means LCSSA must be updated. This is usually straightforward, unless
you create a new value in loop and use it outside, or unless you manipulate loop exit
edges (functions are provided to make these manipulations simple). rewrite_into_loop_
closed_ssa is used to rewrite SSA form to LCSSA, and verify_loop_closed_ssa to check
that the invariant of LCSSA is preserved.

16.5 Scalar evolutions

Scalar evolutions (SCEV) are used to represent results of induction variable analysis on
GIMPLE. They enable us to represent variables with complicated behavior in a sim-
ple and consistent way (we only use it to express values of polynomial induction vari-
ables, but it is possible to extend it). The interfaces to SCEV analysis are declared in
‘tree-scalar-evolution.h’. To use scalar evolutions analysis, scev_initialize must be
used. To stop using SCEV, scev_finalize should be used. SCEV analysis caches results
in order to save time and memory. This cache however is made invalid by most of the
loop transformations, including removal of code. If such a transformation is performed,
scev_reset must be called to clean the caches.

Given an SSA name, its behavior in loops can be analyzed using the analyze_scalar_
evolution function. The returned SCEV however does not have to be fully analyzed
and it may contain references to other SSA names defined in the loop. To resolve these
(potentially recursive) references, instantiate_parameters or resolve_mixers functions
must be used. instantiate_parameters is useful when you use the results of SCEV only
for some analysis, and when you work with whole nest of loops at once. It will try replacing
all SSA names by their SCEV in all loops, including the super-loops of the current loop,
thus providing a complete information about the behavior of the variable in the loop nest.
resolve_mixers is useful if you work with only one loop at a time, and if you possibly need
to create code based on the value of the induction variable. It will only resolve the SSA
names defined in the current loop, leaving the SSA names defined outside unchanged, even
if their evolution in the outer loops is known.

The SCEV is a normal tree expression, except for the fact that it may contain several
special tree nodes. One of them is SCEV_NOT_KNOWN, used for SSA names whose value cannot
be expressed. The other one is POLYNOMIAL_CHREC. Polynomial chrec has three arguments —
base, step and loop (both base and step may contain further polynomial chrecs). Type of the
expression and of base and step must be the same. A variable has evolution POLYNOMIAL _
CHREC (base, step, loop) if it is (in the specified loop) equivalent to x_1 in the following
example

while (...)



332 GNU Compiler Collection (GCC) Internals

{
phi (base, x_2);
x_1 + step;

x_1
x_2

}

Note that this includes the language restrictions on the operations. For example, if we
compile C code and x has signed type, then the overflow in addition would cause undefined
behavior, and we may assume that this does not happen. Hence, the value with this SCEV
cannot overflow (which restricts the number of iterations of such a loop).

In many cases, one wants to restrict the attention just to affine induction variables.
In this case, the extra expressive power of SCEV is not useful, and may complicate the
optimizations. In this case, simple_iv function may be used to analyze a value — the result
is a loop-invariant base and step.

16.6 IV analysis on RTL

The induction variable on RTL is simple and only allows analysis of affine induction vari-
ables, and only in one loop at once. The interface is declared in ‘cfgloop.h’. Before
analyzing induction variables in a loop L, iv_analysis_loop_init function must be called
on L. After the analysis (possibly calling iv_analysis_loop_init for several loops) is fin-
ished, iv_analysis_done should be called. The following functions can be used to access
the results of the analysis:

e iv_analyze: Analyzes a single register used in the given insn. If no use of the register
in this insn is found, the following insns are scanned, so that this function can be called
on the insn returned by get_condition.

e iv_analyze_result: Analyzes result of the assignment in the given insn.

e iv_analyze_expr: Analyzes a more complicated expression. All its operands are ana-
lyzed by iv_analyze, and hence they must be used in the specified insn or one of the
following insns.

The description of the induction variable is provided in struct rtx_iv. In order to
handle subregs, the representation is a bit complicated; if the value of the extend field is
not UNKNOWN, the value of the induction variable in the i-th iteration is

delta + mult * extend_{extend_mode} (subreg_{mode} (base + i * step)),

with the following exception: if first_special is true, then the value in the first iteration
(when i is zero) is delta + mult * base. However, if extend is equal to UNKNOWN, then
first_special must be false, delta 0, mult 1 and the value in the i-th iteration is

subreg_{mode} (base + i * step)

The function get_iv_value can be used to perform these calculations.

16.7 Number of iterations analysis

Both on GIMPLE and on RTL, there are functions available to determine the number of
iterations of a loop, with a similar interface. The number of iterations of a loop in GCC
is defined as the number of executions of the loop latch. In many cases, it is not possible
to determine the number of iterations unconditionally — the determined number is correct
only if some assumptions are satisfied. The analysis tries to verify these conditions using
the information contained in the program; if it fails, the conditions are returned together
with the result. The following information and conditions are provided by the analysis:



Chapter 16: Analysis and Representation of Loops 333

e assumptions: If this condition is false, the rest of the information is invalid.

e noloop_assumptions on RTL, may_be_zero on GIMPLE: If this condition is true, the
loop exits in the first iteration.

e infinite: If this condition is true, the loop is infinite. This condition is only avail-
able on RTL. On GIMPLE, conditions for finiteness of the loop are included in
assumptions.

e niter_expr on RTL, niter on GIMPLE: The expression that gives number of iter-
ations. The number of iterations is defined as the number of executions of the loop
latch.

Both on GIMPLE and on RTL, it necessary for the induction variable analysis framework
to be initialized (SCEV on GIMPLE, loop-iv on RTL). On GIMPLE, the results are stored
to struct tree_niter_desc structure. Number of iterations before the loop is exited
through a given exit can be determined using number_of_iterations_exit function. On
RTL, the results are returned in struct niter_desc structure. The corresponding function
is named check_simple_exit. There are also functions that pass through all the exits of
a loop and try to find one with easy to determine number of iterations — find_loop_niter
on GIMPLE and find_simple_exit on RTL. Finally, there are functions that provide the
same information, but additionally cache it, so that repeated calls to number of iterations
are not so costly — number_of_latch_executions on GIMPLE and get_simple_loop_
desc on RTL.

Note that some of these functions may behave slightly differently than others — some of
them return only the expression for the number of iterations, and fail if there are some
assumptions. The function number_of_latch_executions works only for single-exit loops.
The function number_of _cond_exit_executions can be used to determine number of ex-
ecutions of the exit condition of a single-exit loop (i.e., the number_of _latch_executions
increased by one).

On GIMPLE, below constraint flags affect semantics of some APIs of number of iterations
analyzer:

e LOOP_C_INFINITE: If this constraint flag is set, the loop is known to be infinite. APIs
like number_of _iterations_exit can return false directly without doing any analysis.

e LOOP_C_FINITE: If this constraint flag is set, the loop is known to be finite, in other
words, loop’s number of iterations can be computed with assumptions be true.

Generally, the constraint flags are set/cleared by consumers which are loop optimizers.
It’s also the consumers’ responsibility to set/clear constraints correctly. Failing to do that
might result in hard to track down bugs in scev/niter consumers. One typical use case is
vectorizer: it drives number of iterations analyzer by setting LOOP_C_FINITE and vectorizes
possibly infinite loop by versioning loop with analysis result. In return, constraints set by
consumers can also help number of iterations analyzer in following optimizers. For example,
niter of a loop versioned under assumptions is valid unconditionally.

Other constraints may be added in the future, for example, a constraint indicating that
loops’ latch must roll thus may_be_zero would be false unconditionally.



334 GNU Compiler Collection (GCC) Internals

16.8 Data Dependency Analysis

The code for the data dependence analysis can be found in ‘tree-data-ref.c’ and its inter-
face and data structures are described in ‘tree-data-ref.h’. The function that computes
the data dependences for all the array and pointer references for a given loop is compute_
data_dependences_for_loop. This function is currently used by the linear loop transform
and the vectorization passes. Before calling this function, one has to allocate two vectors:
a first vector will contain the set of data references that are contained in the analyzed loop
body, and the second vector will contain the dependence relations between the data refer-
ences. Thus if the vector of data references is of size n, the vector containing the dependence
relations will contain n*n elements. However if the analyzed loop contains side effects, such
as calls that potentially can interfere with the data references in the current analyzed loop,
the analysis stops while scanning the loop body for data references, and inserts a single
chrec_dont_know in the dependence relation array.

The data references are discovered in a particular order during the scanning of the loop
body: the loop body is analyzed in execution order, and the data references of each state-
ment are pushed at the end of the data reference array. Two data references syntactically
occur in the program in the same order as in the array of data references. This syntactic
order is important in some classical data dependence tests, and mapping this order to the
elements of this array avoids costly queries to the loop body representation.

Three types of data references are currently handled: ARRAY_REF, INDIRECT_REF
and COMPONENT_REF. The data structure for the data reference is data_reference,
where data_reference_p is a name of a pointer to the data reference structure. The
structure contains the following elements:

e base_object_info: Provides information about the base object of the data reference
and its access functions. These access functions represent the evolution of the data
reference in the loop relative to its base, in keeping with the classical meaning of the
data reference access function for the support of arrays. For example, for a reference
a.b[i] [j], the base object is a.b and the access functions, one for each array subscript,
are: {i_init, + i_step}_1, {j_init, +, j_step}_2.

e first_location_in_loop: Provides information about the first location accessed by
the data reference in the loop and about the access function used to represent evolution
relative to this location. This data is used to support pointers, and is not used for arrays
(for which we have base objects). Pointer accesses are represented as a one-dimensional
access that starts from the first location accessed in the loop. For example:

forl i
for2 j
*((int *)p + i + j) = alil[jl;
The access function of the pointer access is {0, + 4B}_for2 relative top + i. The access
functions of the array are {i_init, + i_step}_forl and {j_init, +, j_step}_for2
relative to a.

Usually, the object the pointer refers to is either unknown, or we cannot prove that the
access is confined to the boundaries of a certain object.

Two data references can be compared only if at least one of these two representations
has all its fields filled for both data references.



Chapter 16: Analysis and Representation of Loops 335

The current strategy for data dependence tests is as follows: If both a and b are
represented as arrays, compare a.base_object and b.base_object; if they are equal,
apply dependence tests (use access functions based on base_objects). Else if both a and
b are represented as pointers, compare a.first_location and b.first_location; if
they are equal, apply dependence tests (use access functions based on first location).
However, if a and b are represented differently, only try to prove that the bases are
definitely different.

Aliasing information.

Alignment information.

The structure describing the relation between two data references is data_dependence_
relation and the shorter name for a pointer to such a structure is ddr_p. This structure
contains:

a pointer to each data reference,

a tree node are_dependent that is set to chrec_known if the analysis has proved that
there is no dependence between these two data references, chrec_dont_know if the
analysis was not able to determine any useful result and potentially there could exist
a dependence between these data references, and are_dependent is set to NULL_TREE
if there exist a dependence relation between the data references, and the description
of this dependence relation is given in the subscripts, dir_vects, and dist_vects
arrays,

a boolean that determines whether the dependence relation can be represented by a
classical distance vector,

an array subscripts that contains a description of each subscript of the data references.
Given two array accesses a subscript is the tuple composed of the access functions for
a given dimension. For example, given A[f1] [£2] [£3] and B[gl] [g2] [g3], there are
three subscripts: (£1, gl1), (£2, g2), (£3, g3).

two arrays dir_vects and dist_vects that contain classical representations of the
data dependences under the form of direction and distance dependence vectors,

an array of loops loop_nest that contains the loops to which the distance and direction
vectors refer to.

Several functions for pretty printing the information extracted by the data dependence
analysis are available: dump_ddrs prints with a maximum verbosity the details of a data
dependence relations array, dump_dist_dir_vectors prints only the classical distance and
direction vectors for a data dependence relations array, and dump_data_references prints
the details of the data references contained in a data reference array.






Chapter 17: Machine Descriptions 337

17 Machine Descriptions

A machine description has two parts: a file of instruction patterns (‘.md’ file) and a C
header file of macro definitions.

The ‘.md’ file for a target machine contains a pattern for each instruction that the target
machine supports (or at least each instruction that is worth telling the compiler about).
It may also contain comments. A semicolon causes the rest of the line to be a comment,
unless the semicolon is inside a quoted string.

See the next chapter for information on the C header file.

17.1 Overview of How the Machine Description is Used

There are three main conversions that happen in the compiler:
1. The front end reads the source code and builds a parse tree.
2. The parse tree is used to generate an RTL insn list based on named instruction patterns.

3. The insn list is matched against the RTL templates to produce assembler code.

For the generate pass, only the names of the insns matter, from either a named define_
insn or a define_expand. The compiler will choose the pattern with the right name and
apply the operands according to the documentation later in this chapter, without regard
for the RTL template or operand constraints. Note that the names the compiler looks for
are hard-coded in the compiler—it will ignore unnamed patterns and patterns with names
it doesn’t know about, but if you don’t provide a named pattern it needs, it will abort.

If a define_insn is used, the template given is inserted into the insn list. If a define_
expand is used, one of three things happens, based on the condition logic. The condition
logic may manually create new insns for the insn list, say via emit_insn(), and invoke DONE.
For certain named patterns, it may invoke FAIL to tell the compiler to use an alternate way
of performing that task. If it invokes neither DONE nor FAIL, the template given in the
pattern is inserted, as if the define_expand were a define_insn.

Once the insn list is generated, various optimization passes convert, replace, and rearrange
the insns in the insn list. This is where the define_split and define_peephole patterns
get used, for example.

Finally, the insn list’s RTL is matched up with the RTL templates in the define_insn

patterns, and those patterns are used to emit the final assembly code. For this purpose,
each named define_insn acts like it’s unnamed, since the names are ignored.

17.2 Everything about Instruction Patterns

A define_insn expression is used to define instruction patterns to which insns may be
matched. A define_insn expression contains an incomplete RTL expression, with pieces
to be filled in later, operand constraints that restrict how the pieces can be filled in, and an
output template or C code to generate the assembler output.

A define_insn is an RTL expression containing four or five operands:

1. An optional name n. When a name is present, the compiler automically generates
a C++ function ‘gen_n’ that takes the operands of the instruction as arguments and



338

GNU Compiler Collection (GCC) Internals

returns the instruction’s rtx pattern. The compiler also assigns the instruction a unique
code ‘CODE_FOR_n’, with all such codes belonging to an enum called insn_code.

These names serve one of two purposes. The first is to indicate that the instruction
performs a certain standard job for the RTL-generation pass of the compiler, such as
a move, an addition, or a conditional jump. The second is to help the target generate
certain target-specific operations, such as when implementing target-specific intrinsic
functions.

It is better to prefix target-specific names with the name of the target, to avoid any
clash with current or future standard names.

The absence of a name is indicated by writing an empty string where the name should
go. Nameless instruction patterns are never used for generating RTL code, but they
may permit several simpler insns to be combined later on.

For the purpose of debugging the compiler, you may also specify a name beginning
with the ‘*’ character. Such a name is used only for identifying the instruction in RTL
dumps; it is equivalent to having a nameless pattern for all other purposes. Names
beginning with the ‘*’ character are not required to be unique.

The name may also have the form ‘@n’. This has the same effect as a name ‘n’, but
in addition tells the compiler to generate further helper functions; see Section 17.23.5
[Parameterized Names|, page 477 for details.

The RTL template: This is a vector of incomplete RTL expressions which describe
the semantics of the instruction (see Section 17.4 [RTL Template], page 339). It is
incomplete because it may contain match_operand, match_operator, and match_dup
expressions that stand for operands of the instruction.

If the vector has multiple elements, the RTL template is treated as a parallel expres-
sion.

The condition: This is a string which contains a C expression. When the compiler
attempts to match RTL against a pattern, the condition is evaluated. If the condition
evaluates to true, the match is permitted. The condition may be an empty string,
which is treated as always true.

For a named pattern, the condition may not depend on the data in the insn being
matched, but only the target-machine-type flags. The compiler needs to test these
conditions during initialization in order to learn exactly which named instructions are
available in a particular run.

For nameless patterns, the condition is applied only when matching an individual insn,
and only after the insn has matched the pattern’s recognition template. The insn’s
operands may be found in the vector operands.

An instruction condition cannot become more restrictive as compilation progresses.
If the condition accepts a particular RTL instruction at one stage of compilation,
it must continue to accept that instruction until the final pass. For example,
‘lreload_completed’ and ‘can_create_pseudo_p ()’ are both invalid instruction
conditions, because they are true during the earlier RTL passes and false during the
later ones. For the same reason, if a condition accepts an instruction before register
allocation, it cannot later try to control register allocation by excluding certain
register or value combinations.



Chapter 17: Machine Descriptions 339

Although a condition cannot become more restrictive as compilation progresses, the
condition for a nameless pattern can become more permissive. For example, a nameless
instruction can require ‘reload_completed’ to be true, in which case it only matches
after register allocation.

4. The output template or output statement: This is either a string, or a fragment of C
code which returns a string.

When simple substitution isn’t general enough, you can specify a piece of C code to
compute the output. See Section 17.6 [Output Statement], page 344.

5. The insn attributes: This is an optional vector containing the values of attributes for
insns matching this pattern (see Section 17.19 [Insn Attributes|, page 450).

17.3 Example of define_insn

Here is an example of an instruction pattern, taken from the machine description for the
68000/68020.

(define_insn "tstsi"
[(set (ccO)

(match_operand:SI O "general_operand" "rm"))]
nn

W

if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
return \"tstl %0\";
return \"cmpl #0,%0\";
™
This can also be written using braced strings:

(define_insn "tstsi"
[(set (ccO)

(match_operand:SI O "general_operand" "rm"))]
nn

¢ if (TARGET_68020 || ! ADDRESS_REG_P (operands[0]))
return "tstl %0";
return "cmpl #0,%0";
b
This describes an instruction which sets the condition codes based on the value of a
general operand. It has no condition, so any insn with an RTL description of the form
shown may be matched to this pattern. The name ‘tstsi’ means “test a SImode value”
and tells the RTL generation pass that, when it is necessary to test such a value, an insn
to do so can be constructed using this pattern.

The output control string is a piece of C code which chooses which output template to
return based on the kind of operand and the specific type of CPU for which code is being
generated.

‘““rm"’ is an operand constraint. Its meaning is explained below.

17.4 RTL Template

The RTL template is used to define which insns match the particular pattern and how to
find their operands. For named patterns, the RTL template also says how to construct an
insn from specified operands.



340 GNU Compiler Collection (GCC) Internals

Construction involves substituting specified operands into a copy of the template. Match-
ing involves determining the values that serve as the operands in the insn being matched.
Both of these activities are controlled by special expression types that direct matching and
substitution of the operands.

(match_operand:m n predicate constraint)
This expression is a placeholder for operand number n of the insn. When
constructing an insn, operand number n will be substituted at this point. When
matching an insn, whatever appears at this position in the insn will be taken
as operand number n; but it must satisfy predicate or this instruction pattern
will not match at all.

Operand numbers must be chosen consecutively counting from zero in each
instruction pattern. There may be only one match_operand expression in the
pattern for each operand number. Usually operands are numbered in the order
of appearance in match_operand expressions. In the case of a define_expand,
any operand numbers used only in match_dup expressions have higher values
than all other operand numbers.

predicate is a string that is the name of a function that accepts two arguments,
an expression and a machine mode. See Section 17.7 [Predicates|, page 346.
During matching, the function will be called with the putative operand as the
expression and m as the mode argument (if m is not specified, VOIDmode will be
used, which normally causes predicate to accept any mode). If it returns zero,
this instruction pattern fails to match. predicate may be an empty string; then
it means no test is to be done on the operand, so anything which occurs in this
position is valid.

Most of the time, predicate will reject modes other than m—but not always.
For example, the predicate address_operand uses m as the mode of memory
ref that the address should be valid for. Many predicates accept const_int
nodes even though their mode is VOIDmode.

constraint controls reloading and the choice of the best register class to use for
a value, as explained later (see Section 17.8 [Constraints|, page 350). If the
constraint would be an empty string, it can be omitted.

People are often unclear on the difference between the constraint and the predi-
cate. The predicate helps decide whether a given insn matches the pattern. The
constraint plays no role in this decision; instead, it controls various decisions in
the case of an insn which does match.

(match_scratch:m n constraint)
This expression is also a placeholder for operand number n and indicates that
operand must be a scratch or reg expression.
When matching patterns, this is equivalent to

(match_operand:m n "scratch_operand" constraint)
but, when generating RTL, it produces a (scratch:m) expression.

If the last few expressions in a parallel are clobber expressions whose
operands are either a hard register or match_scratch, the combiner can add
or delete them when necessary. See Section 14.15 [Side Effects|, page 297.



Chapter 17: Machine Descriptions 341

(match_dup n)
This expression is also a placeholder for operand number n. It is used when the
operand needs to appear more than once in the insn.

In construction, match_dup acts just like match_operand: the operand is sub-
stituted into the insn being constructed. But in matching, match_dup behaves
differently. It assumes that operand number n has already been determined by
a match_operand appearing earlier in the recognition template, and it matches
only an identical-looking expression.

Note that match_dup should not be used to tell the compiler that a particular
register is being used for two operands (example: add that adds one register to
another; the second register is both an input operand and the output operand).
Use a matching constraint (see Section 17.8.1 [Simple Constraints|, page 350)
for those. match_dup is for the cases where one operand is used in two places
in the template, such as an instruction that computes both a quotient and a
remainder, where the opcode takes two input operands but the RTL template
has to refer to each of those twice; once for the quotient pattern and once for

the remainder pattern.

(match_operator:m n predicate [operands...])
This pattern is a kind of placeholder for a variable RTL expression code.

When constructing an insn, it stands for an RTL expression whose expression
code is taken from that of operand n, and whose operands are constructed from
the patterns operands.

When matching an expression, it matches an expression if the function predi-
cate returns nonzero on that expression and the patterns operands match the
operands of the expression.

Suppose that the function commutative_operator is defined as follows, to
match any expression whose operator is one of the commutative arithmetic
operators of RTL and whose mode is mode:
int
commutative_integer_operator (x, mode)
rtx Xx;
machine_mode mode;

{
enum rtx_code code = GET_CODE (x);
if (GET_MODE (x) != mode)
return O;
return (GET_RTX_CLASS (code) == RTX_COMM_ARITH
|| code == EQ || code == NE);
}
Then the following pattern will match any RTL expression consisting of a com-
mutative operator applied to two general operands:
(match_operator:SI 3 "commutative_operator"
[(match_operand:SI 1 "general_operand" "g")
(match_operand:SI 2 "general_operand" "g")])
Here the vector [operands...] contains two patterns because the expressions
to be matched all contain two operands.

When this pattern does match, the two operands of the commutative operator
are recorded as operands 1 and 2 of the insn. (This is done by the two instances



342

GNU Compiler Collection (GCC) Internals

of match_operand.) Operand 3 of the insn will be the entire commutative
expression: use GET_CODE (operands[3]) to see which commutative operator
was used.

The machine mode m of match_operator works like that of match_operand: it
is passed as the second argument to the predicate function, and that function
is solely responsible for deciding whether the expression to be matched “has”
that mode.

When constructing an insn, argument 3 of the gen-function will specify the
operation (i.e. the expression code) for the expression to be made. It should
be an RTL expression, whose expression code is copied into a new expression
whose operands are arguments 1 and 2 of the gen-function. The subexpressions
of argument 3 are not used; only its expression code matters.

When match_operator is used in a pattern for matching an insn, it usually best
if the operand number of the match_operator is higher than that of the actual
operands of the insn. This improves register allocation because the register
allocator often looks at operands 1 and 2 of insns to see if it can do register
tying.

There is no way to specify constraints in match_operator. The operand of
the insn which corresponds to the match_operator never has any constraints
because it is never reloaded as a whole. However, if parts of its operands are
matched by match_operand patterns, those parts may have constraints of their
own.

(match_op_dup:m nloperands. . .])

Like match_dup, except that it applies to operators instead of operands. When
constructing an insn, operand number n will be substituted at this point. But in
matching, match_op_dup behaves differently. It assumes that operand number
n has already been determined by a match_operator appearing earlier in the
recognition template, and it matches only an identical-looking expression.

(match_parallel n predicate [subpat...])

This pattern is a placeholder for an insn that consists of a parallel expression
with a variable number of elements. This expression should only appear at the
top level of an insn pattern.

When constructing an insn, operand number n will be substituted at this point.
When matching an insn, it matches if the body of the insn is a parallel
expression with at least as many elements as the vector of subpat expressions
in the match_parallel, if each subpat matches the corresponding element of
the parallel, and the function predicate returns nonzero on the parallel
that is the body of the insn. It is the responsibility of the predicate to validate
elements of the parallel beyond those listed in the match_parallel.

A typical use of match_parallel is to match load and store multiple expres-
sions, which can contain a variable number of elements in a parallel. For
example,

(define_insn ""
[(match_parallel O "load_multiple_operation"
[(set (match_operand:SI 1 "gpc_reg_operand" "=r")



Chapter 17: Machine Descriptions 343

(match_operand:SI 2 "memory_operand" "m"))
(use (reg:SI 179))
(clobber (reg:SI 179))1)1]

"loadm 0,0,%1,%2")
This example comes from ‘a29k.md’. The function load_multiple_operation
is defined in ‘a29k.c’ and checks that subsequent elements in the parallel are
the same as the set in the pattern, except that they are referencing subsequent
registers and memory locations.

An insn that matches this pattern might look like:

(parallel
[(set (reg:SI 20) (mem:SI (reg:SI 100)))
(use (reg:SI 179))
(clobber (reg:SI 179))
(set (reg:SI 21)
(mem:SI (plus:SI (reg:SI 100)
(const_int 4))))
(set (reg:SI 22)
(mem:SI (plus:SI (reg:SI 100)
(const_int 8))))1)

(match_par_dup n [subpat...])
Like match_op_dup, but for match_parallel instead of match_operator.

17.5 Output Templates and Operand Substitution

The output template is a string which specifies how to output the assembler code for an
instruction pattern. Most of the template is a fixed string which is output literally. The
character ‘%’ is used to specify where to substitute an operand; it can also be used to identify
places where different variants of the assembler require different syntax.

In the simplest case, a ‘%’ followed by a digit n says to output operand n at that point in
the string.

‘% followed by a letter and a digit says to output an operand in an alternate fashion.
Four letters have standard, built-in meanings described below. The machine description
macro PRINT_OPERAND can define additional letters with nonstandard meanings.

‘hedigit’ can be used to substitute an operand that is a constant value without the
syntax that normally indicates an immediate operand.

‘pndigit’ is like ‘Y,cdigit’ except that the value of the constant is negated before printing.

‘hadigit’ can be used to substitute an operand as if it were a memory reference, with
the actual operand treated as the address. This may be useful when outputting a “load

address” instruction, because often the assembler syntax for such an instruction requires
you to write the operand as if it were a memory reference.

‘%ldigit’ is used to substitute a label_ref into a jump instruction.

‘%="outputs a number which is unique to each instruction in the entire compilation. This
is useful for making local labels to be referred to more than once in a single template that
generates multiple assembler instructions.

‘%’ followed by a punctuation character specifies a substitution that does not use an
operand. Only one case is standard: ‘%%’ outputs a ‘)’ into the assembler code. Other



344 GNU Compiler Collection (GCC) Internals

nonstandard cases can be defined in the PRINT_OPERAND macro. You must also define
which punctuation characters are valid with the PRINT_OPERAND_PUNCT_VALID_P macro.

The template may generate multiple assembler instructions. Write the text for the in-
structions, with ‘\;’ between them.

When the RTL contains two operands which are required by constraint to match each
other, the output template must refer only to the lower-numbered operand. Matching
operands are not always identical, and the rest of the compiler arranges to put the proper
RTL expression for printing into the lower-numbered operand.

One use of nonstandard letters or punctuation following ‘%’ is to distinguish between
different assembler languages for the same machine; for example, Motorola syntax versus
MIT syntax for the 68000. Motorola syntax requires periods in most opcode names, while
MIT syntax does not. For example, the opcode ‘movel’ in MIT syntax is ‘move.l’ in
Motorola syntax. The same file of patterns is used for both kinds of output syntax, but
the character sequence ‘%.’ is used in each place where Motorola syntax wants a period.
The PRINT_OPERAND macro for Motorola syntax defines the sequence to output a period;
the macro for MIT syntax defines it to do nothing.

As a special case, a template consisting of the single character # instructs the compiler
to first split the insn, and then output the resulting instructions separately. This helps
eliminate redundancy in the output templates. If you have a define_insn that needs
to emit multiple assembler instructions, and there is a matching define_split already
defined, then you can simply use # as the output template instead of writing an output
template that emits the multiple assembler instructions.

Note that # only has an effect while generating assembly code; it does not affect whether
a split occurs earlier. An associated define_split must exist and it must be suitable for
use after register allocation.

If the macro ASSEMBLER_DIALECT is defined, you can use construct of the form
‘{optionO|optionl|option2}’ in the templates. These describe multiple variants of
assembler language syntax. See Section 18.20.7 [Instruction Output], page 616.

17.6 C Statements for Assembler Output

Often a single fixed template string cannot produce correct and efficient assembler code for
all the cases that are recognized by a single instruction pattern. For example, the opcodes
may depend on the kinds of operands; or some unfortunate combinations of operands may
require extra machine instructions.

If the output control string starts with a ‘@, then it is actually a series of templates, each
on a separate line. (Blank lines and leading spaces and tabs are ignored.) The templates
correspond to the pattern’s constraint alternatives (see Section 17.8.2 [Multi-Alternative],
page 355). For example, if a target machine has a two-address add instruction ‘addr’ to
add into a register and another ‘addm’ to add a register to memory, you might write this
pattern:

(define_insn "addsi3"
[(set (match_operand:SI O "general_operand" "=r,m")
(plus:SI (match_operand:SI 1 "general_operand" "0,0")
(match_operand:SI 2 "general_operand" "g,r")))]

"@



Chapter 17: Machine Descriptions 345

addr %2,%0
addm %2,%0")

If the output control string starts with a ‘*’, then it is not an output template but rather a
piece of C program that should compute a template. It should execute a return statement
to return the template-string you want. Most such templates use C string literals, which
require doublequote characters to delimit them. To include these doublequote characters in
the string, prefix each one with ‘\’.

If the output control string is written as a brace block instead of a double-quoted string,
it is automatically assumed to be C code. In that case, it is not necessary to put in a leading
asterisk, or to escape the doublequotes surrounding C string literals.

The operands may be found in the array operands, whose C data type is rtx [].

It is very common to select different ways of generating assembler code based on whether
an immediate operand is within a certain range. Be careful when doing this, because the
result of INTVAL is an integer on the host machine. If the host machine has more bits in an
int than the target machine has in the mode in which the constant will be used, then some
of the bits you get from INTVAL will be superfluous. For proper results, you must carefully
disregard the values of those bits.

It is possible to output an assembler instruction and then go on to output or compute
more of them, using the subroutine output_asm_insn. This receives two arguments: a
template-string and a vector of operands. The vector may be operands, or it may be
another array of rtx that you declare locally and initialize yourself.

When an insn pattern has multiple alternatives in its constraints, often the appearance
of the assembler code is determined mostly by which alternative was matched. When this
is so, the C code can test the variable which_alternative, which is the ordinal number of
the alternative that was actually satisfied (0 for the first, 1 for the second alternative, etc.).

For example, suppose there are two opcodes for storing zero, ‘clrreg’ for registers and
‘clrmem’ for memory locations. Here is how a pattern could use which_alternative to
choose between them:

(define_insn ""
[(set (match_operand:SI O "general_operand" "=r,m")
(const_int 0))]

{
return (which_alternative ==

? "clrreg %0" : "clrmem %0");
»

The example above, where the assembler code to generate was solely determined by the
alternative, could also have been specified as follows, having the output control string start
with a ‘@”:

(define_insn ""

[(set (match_operand:SI O "general_operand" "=r,m")
(const_int 0))]

||@
clrreg %0
clrmem %0")
If you just need a little bit of C code in one (or a few) alternatives, you can use ‘*’ inside
of a ‘@ multi-alternative template:



346 GNU Compiler Collection (GCC) Internals

(define_insn ""
[(set (match_operand:SI O "general_operand" "=r,<,m")
(const_int 0))]

"e

clrreg %0

* return stack_mem_p (operands[0]) 7 \"push O\" : \"clrmem %0\";
clrmem %0")

17.7 Predicates

A predicate determines whether a match_operand or match_operator expression matches,
and therefore whether the surrounding instruction pattern will be used for that combination
of operands. GCC has a number of machine-independent predicates, and you can define
machine-specific predicates as needed. By convention, predicates used with match_operand
have names that end in ‘_operand’, and those used with match_operator have names that
end in ‘_operator’.

All predicates are boolean functions (in the mathematical sense) of two arguments: the
RTL expression that is being considered at that position in the instruction pattern, and
the machine mode that the match_operand or match_operator specifies. In this section,
the first argument is called op and the second argument mode. Predicates can be called
from C as ordinary two-argument functions; this can be useful in output templates or other
machine-specific code.

Operand predicates can allow operands that are not actually acceptable to the hard-
ware, as long as the constraints give reload the ability to fix them up (see Section 17.8
[Constraints], page 350). However, GCC will usually generate better code if the predicates
specify the requirements of the machine instructions as closely as possible. Reload cannot
fix up operands that must be constants (“immediate operands”); you must use a predicate
that allows only constants, or else enforce the requirement in the extra condition.

Most predicates handle their mode argument in a uniform manner. If mode is VOIDmode
(unspecified), then op can have any mode. If mode is anything else, then op must have the
same mode, unless op is a CONST_INT or integer CONST_DOUBLE. These RTL expressions
always have VOIDmode, so it would be counterproductive to check that their mode matches.
Instead, predicates that accept CONST_INT and/or integer CONST_DOUBLE check that the
value stored in the constant will fit in the requested mode.

Predicates with this behavior are called normal. genrecog can optimize the instruction
recognizer based on knowledge of how normal predicates treat modes. It can also diagnose
certain kinds of common errors in the use of normal predicates; for instance, it is almost
always an error to use a normal predicate without specifying a mode.

Predicates that do something different with their mode argument are called special. The
generic predicates address_operand and pmode_register_operand are special predicates.
genrecog does not do any optimizations or diagnosis when special predicates are used.

17.7.1 Machine-Independent Predicates

These are the generic predicates available to all back ends. They are defined in ‘recog.c’.
The first category of predicates allow only constant, or immediate, operands.



Chapter 17: Machine Descriptions 347

immediate_operand [Function]
This predicate allows any sort of constant that fits in mode. It is an appropriate
choice for instructions that take operands that must be constant.

const_int_operand [Function]
This predicate allows any CONST_INT expression that fits in mode. It is an appropriate
choice for an immediate operand that does not allow a symbol or label.

const_double_operand [Function]
This predicate accepts any CONST_DOUBLE expression that has exactly mode. If mode
is VOIDmode, it will also accept CONST_INT. It is intended for immediate floating point
constants.

The second category of predicates allow only some kind of machine register.

register_operand [Function]
This predicate allows any REG or SUBREG expression that is valid for mode. It is often
suitable for arithmetic instruction operands on a RISC machine.

pmode_register_operand [Function]
This is a slight variant on register_operand which works around a limitation in the
machine-description reader.

(match_operand n "pmode_register_operand" constraint)
means exactly what
(match_operand:P n "register_operand" constraint)
would mean, if the machine-description reader accepted ‘:P’ mode suffixes. Unfor-

tunately, it cannot, because Pmode is an alias for some other mode, and might vary
with machine-specific options. See Section 18.31 [Misc|, page 642.

scratch_operand [Function]
This predicate allows hard registers and SCRATCH expressions, but not pseudo-
registers. It is used internally by match_scratch; it should not be used
directly.

The third category of predicates allow only some kind of memory reference.

memory_operand [Function]
This predicate allows any valid reference to a quantity of mode mode in memory,
as determined by the weak form of GO_IF_LEGITIMATE_ADDRESS (see Section 18.13
[Addressing Modes|, page 562).

address_operand [Function]
This predicate is a little unusual; it allows any operand that is a valid expression
for the address of a quantity of mode mode, again determined by the weak form of
GO_IF_LEGITIMATE_ADDRESS. To first order, if ‘(mem:mode (exp))’ is acceptable to
memory_operand, then exp is acceptable to address_operand. Note that exp does
not necessarily have the mode mode.



348 GNU Compiler Collection (GCC) Internals

indirect_operand [Function]
This is a stricter form of memory_operand which allows only memory references with
a general_operand as the address expression. New uses of this predicate are dis-
couraged, because general_operand is very permissive, so it’s hard to tell what an
indirect_operand does or does not allow. If a target has different requirements
for memory operands for different instructions, it is better to define target-specific
predicates which enforce the hardware’s requirements explicitly.

push_operand [Function]
This predicate allows a memory reference suitable for pushing a value onto the stack.
This will be a MEM which refers to stack_pointer_rtx, with a side effect in its address
expression (see Section 14.16 [Incdec], page 302); which one is determined by the
STACK_PUSH_CODE macro (see Section 18.9.1 [Frame Layout|, page 522).

pop_operand [Function]
This predicate allows a memory reference suitable for popping a value off the stack.
Again, this will be a MEM referring to stack_pointer_rtx, with a side effect in its
address expression. However, this time STACK_POP_CODE is expected.

The fourth category of predicates allow some combination of the above operands.

nonmemory_operand [Function]
This predicate allows any immediate or register operand valid for mode.

nonimmediate_operand [Function]
This predicate allows any register or memory operand valid for mode.

general_operand [Function]
This predicate allows any immediate, register, or memory operand valid for mode.

Finally, there are two generic operator predicates.

comparison_operator [Function]
This predicate matches any expression which performs an arithmetic comparison in
mode; that is, COMPARISON_P is true for the expression code.

ordered_comparison_operator [Function]
This predicate matches any expression which performs an arithmetic comparison in
mode and whose expression code is valid for integer modes; that is, the expression
code will be one of eq, ne, 1t, 1tu, le, leu, gt, gtu, ge, geu.

17.7.2 Defining Machine-Specific Predicates

Many machines have requirements for their operands that cannot be expressed precisely
using the generic predicates. You can define additional predicates using define_predicate
and define_special_predicate expressions. These expressions have three operands:

e The name of the predicate, as it will be referred to in match_operand or match_
operator expressions.

e An RTL expression which evaluates to true if the predicate allows the operand op, false
if it does not. This expression can only use the following RTL codes:



Chapter 17: Machine Descriptions 349

MATCH_OPERAND
When written inside a predicate expression, a MATCH_OPERAND expression
evaluates to true if the predicate it names would allow op. The operand
number and constraint are ignored. Due to limitations in genrecog, you
can only refer to generic predicates and predicates that have already been
defined.

MATCH_CODE
This expression evaluates to true if op or a specified subexpression of op
has one of a given list of RTX codes.

The first operand of this expression is a string constant containing a
comma-separated list of RTX code names (in lower case). These are the
codes for which the MATCH_CODE will be true.

The second operand is a string constant which indicates what subexpres-
sion of op to examine. If it is absent or the empty string, op itself is
examined. Otherwise, the string constant must be a sequence of digits
and/or lowercase letters. Each character indicates a subexpression to ex-
tract from the current expression; for the first character this is op, for the
second and subsequent characters it is the result of the previous character.
A digit n extracts ‘XEXP (e, n)’; a letter I extracts ‘XVECEXP (e, 0, n)’
where n is the alphabetic ordinal of I (0 for ‘a’, 1 for 'b’, and so on). The
MATCH_CODE then examines the RTX code of the subexpression extracted
by the complete string. It is not possible to extract components of an
rtvec that is not at position 0 within its RTX object.

MATCH_TEST
This expression has one operand, a string constant containing a C expres-
sion. The predicate’s arguments, op and mode, are available with those
names in the C expression. The MATCH_TEST evaluates to true if the C
expression evaluates to a nonzero value. MATCH_TEST expressions must not
have side effects.

AND

IOR

NOT

IF_THEN_ELSE
The basic ‘MATCH_’ expressions can be combined using these logical opera-
tors, which have the semantics of the C operators ‘&&’, ‘I |’, ‘!’, and ‘? :’
respectively. As in Common Lisp, you may give an AND or IOR expres-
sion an arbitrary number of arguments; this has exactly the same effect as
writing a chain of two-argument AND or IOR expressions.

e An optional block of C code, which should execute ‘return true’ if the predicate is
found to match and ‘return false’ if it does not. It must not have any side effects.
The predicate arguments, op and mode, are available with those names.

If a code block is present in a predicate definition, then the RTL expression must
evaluate to true and the code block must execute ‘return true’ for the predicate to
allow the operand. The RTL expression is evaluated first; do not re-check anything in
the code block that was checked in the RTL expression.



350 GNU Compiler Collection (GCC) Internals

The program genrecog scans define_predicate and define_special_predicate ex-
pressions to determine which RTX codes are possibly allowed. You should always make this
explicit in the RTL predicate expression, using MATCH_OPERAND and MATCH_CODE.

Here is an example of a simple predicate definition, from the IA64 machine description:
;3 True if op is a SYMBOL_REF which refers to the sdata section.
(define_predicate "small_addr_symbolic_operand"
(and (match_code "symbol_ref")
(match_test "SYMBOL_REF_SMALL_ADDR_P (op)")))
And here is another, showing the use of the C block.

;3 True if op is a register operand that is (or could be) a GR reg.
(define_predicate "gr_register_operand"

(match_operand 0 "register_operand")
{

unsigned int regno;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);

regno = REGNO (op);
return (regno >= FIRST_PSEUDO_REGISTER || GENERAL_REGNO_P (regno));
i)

Predicates written with define_predicate automatically include a test that mode is
V0IDmode, or op has the same mode as mode, or op is a CONST_INT or CONST_DOUBLE. They
do not check specifically for integer CONST_DOUBLE, nor do they test that the value of either
kind of constant fits in the requested mode. This is because target-specific predicates that
take constants usually have to do more stringent value checks anyway. If you need the
exact same treatment of CONST_INT or CONST_DOUBLE that the generic predicates provide,
use a MATCH_OPERAND subexpression to call const_int_operand, const_double_operand,
or immediate_operand.

Predicates written with define_special_predicate do not get any automatic mode
checks, and are treated as having special mode handling by genrecog.

The program genpreds is responsible for generating code to test predicates. It also writes
a header file containing function declarations for all machine-specific predicates. It is not
necessary to declare these predicates in ‘cpu-protos.h’.

17.8 Operand Constraints

Fach match_operand in an instruction pattern can specify constraints for the operands
allowed. The constraints allow you to fine-tune matching within the set of operands allowed
by the predicate.

Constraints can say whether an operand may be in a register, and which kinds of register;
whether the operand can be a memory reference, and which kinds of address; whether the
operand may be an immediate constant, and which possible values it may have. Constraints
can also require two operands to match. Side-effects aren’t allowed in operands of inline
asm, unless ‘<’ or ‘>’ constraints are used, because there is no guarantee that the side effects
will happen exactly once in an instruction that can update the addressing register.

17.8.1 Simple Constraints

The simplest kind of constraint is a string full of letters, each of which describes one kind
of operand that is permitted. Here are the letters that are allowed:



Chapter 17: Machine Descriptions 351

whitespace

Whitespace characters are ignored and can be inserted at any position except
the first. This enables each alternative for different operands to be visually
aligned in the machine description even if they have different number of con-
straints and modifiers.

A memory operand is allowed, with any kind of address that the machine sup-
ports in general. Note that the letter used for the general memory constraint
can be re-defined by a back end using the TARGET_MEM_CONSTRAINT macro.

A memory operand is allowed, but only if the address is offsettable. This
means that adding a small integer (actually, the width in bytes of the operand,
as determined by its machine mode) may be added to the address and the result
is also a valid memory address.

For example, an address which is constant is offsettable; so is an address that
is the sum of a register and a constant (as long as a slightly larger constant
is also within the range of address-offsets supported by the machine); but an
autoincrement or autodecrement address is not offsettable. More complicated
indirect/indexed addresses may or may not be offsettable depending on the
other addressing modes that the machine supports.

Note that in an output operand which can be matched by another operand,
the constraint letter ‘o’ is valid only when accompanied by both ‘<’ (if the
target machine has predecrement addressing) and >’ (if the target machine has
preincrement addressing).

A memory operand that is not offsettable. In other words, anything that would
fit the ‘m’ constraint but not the ‘o’ constraint.

A memory operand with autodecrement addressing (either predecrement or
postdecrement) is allowed. In inline asm this constraint is only allowed if the
operand is used exactly once in an instruction that can handle the side effects.
Not using an operand with ‘<’ in constraint string in the inline asm pattern
at all or using it in multiple instructions isn’t valid, because the side effects
wouldn’t be performed or would be performed more than once. Furthermore,
on some targets the operand with ‘<’ in constraint string must be accompanied
by special instruction suffixes like %UO instruction suffix on PowerPC or %P0 on
TA-64.

A memory operand with autoincrement addressing (either preincrement or
postincrement) is allowed. In inline asm the same restrictions as for ‘<’ ap-
ply.

A register operand is allowed provided that it is in a general register.

An immediate integer operand (one with constant value) is allowed. This in-
cludes symbolic constants whose values will be known only at assembly time or
later.

An immediate integer operand with a known numeric value is allowed. Many
systems cannot support assembly-time constants for operands less than a word
wide. Constraints for these operands should use ‘n’ rather than ‘i’.



352

‘I’, ‘J” ‘K’,

407’ 417’ 427’ X

GNU Compiler Collection (GCC) Internals

P

Other letters in the range ‘I’ through ‘P’ may be defined in a machine-dependent
fashion to permit immediate integer operands with explicit integer values in
specified ranges. For example, on the 68000, ‘I’ is defined to stand for the
range of values 1 to 8. This is the range permitted as a shift count in the shift
instructions.

An immediate floating operand (expression code const_double) is allowed, but
only if the target floating point format is the same as that of the host machine
(on which the compiler is running).

An immediate floating operand (expression code const_double or
const_vector) is allowed.

‘G’ and ‘H’ may be defined in a machine-dependent fashion to permit immediate
floating operands in particular ranges of values.

An immediate integer operand whose value is not an explicit integer is allowed.

This might appear strange; if an insn allows a constant operand with a value
not known at compile time, it certainly must allow any known value. So why
use ‘s’ instead of ‘1’7 Sometimes it allows better code to be generated.

For example, on the 68000 in a fullword instruction it is possible to use an
immediate operand; but if the immediate value is between —128 and 127, better
code results from loading the value into a register and using the register. This
is because the load into the register can be done with a ‘moveq’ instruction. We
arrange for this to happen by defining the letter ‘K’ to mean “any integer outside
the range —128 to 127”7, and then specifying ‘Ks’ in the operand constraints.

Any register, memory or immediate integer operand is allowed, except for reg-
isters that are not general registers.

Any operand whatsoever is allowed, even if it does not satisfy general_
operand. This is normally used in the constraint of a match_scratch when
certain alternatives will not actually require a scratch register.

Y

An operand that matches the specified operand number is allowed. If a digit
is used together with letters within the same alternative, the digit should come
last.

This number is allowed to be more than a single digit. If multiple digits are en-
countered consecutively, they are interpreted as a single decimal integer. There
is scant chance for ambiguity, since to-date it has never been desirable that
‘10’ be interpreted as matching either operand 1 or operand 0. Should this be
desired, one can use multiple alternatives instead.

This is called a matching constraint and what it really means is that the as-
sembler has only a single operand that fills two roles considered separate in the
RTL insn. For example, an add insn has two input operands and one output
operand in the RTL, but on most CISC machines an add instruction really has
only two operands, one of them an input-output operand:



Chapter 17:

Machine Descriptions 353

addl #35,r12

Matching constraints are used in these circumstances. More precisely, the two
operands that match must include one input-only operand and one output-only
operand. Moreover, the digit must be a smaller number than the number of
the operand that uses it in the constraint.

For operands to match in a particular case usually means that they are identical-
looking RTL expressions. But in a few special cases specific kinds of dissimi-
larity are allowed. For example, *x as an input operand will match *x++ as an
output operand. For proper results in such cases, the output template should
always use the output-operand’s number when printing the operand.

An operand that is a valid memory address is allowed. This is for “load address”
and “push address” instructions.

‘p’ in the constraint must be accompanied by address_operand as the predicate
in the match_operand. This predicate interprets the mode specified in the
match_operand as the mode of the memory reference for which the address
would be valid.

other-letters

Other letters can be defined in machine-dependent fashion to stand for par-
ticular classes of registers or other arbitrary operand types. ‘d’, ‘a’ and ‘f’
are defined on the 68000/68020 to stand for data, address and floating point
registers.

In order to have valid assembler code, each operand must satisfy its constraint. But a
failure to do so does not prevent the pattern from applying to an insn. Instead, it directs
the compiler to modify the code so that the constraint will be satisfied. Usually this is done
by copying an operand into a register.

Contrast,

therefore, the two instruction patterns that follow:

(define_insn ""
[(set (match_operand:SI O "general_operand" "=r")

(plus:SI (match_dup 0)
(match_operand:SI 1 "general_operand" "r")))]

'.u)

which has two operands, one of which must appear in two places, and

(define_insn ""
[(set (match_operand:SI O "general_operand" "=r")

(plus:SI (match_operand:SI 1 "general_operand" "O")
(match_operand:SI 2 "general_operand" "r")))]

'.u)

which has three operands, two of which are required by a constraint to be identical. If we
are considering an insn of the form

(insn

n prev next

(set (reg:SI 3)

L)

(plus:SI (reg:SI 6) (reg:SI 109)))

the first pattern would not apply at all, because this insn does not contain two identical
subexpressions in the right place. The pattern would say, “That does not look like an



354 GNU Compiler Collection (GCC) Internals

add instruction; try other patterns”. The second pattern would say, “Yes, that’s an add
instruction, but there is something wrong with it”. It would direct the reload pass of the
compiler to generate additional insns to make the constraint true. The results might look
like this:

(insn n2 prev n
(set (reg:SI 3) (reg:SI 6))
S

(insn n n2 next
(set (reg:SI 3)
(plus:SI (reg:SI 3) (reg:SI 109)))
)

It is up to you to make sure that each operand, in each pattern, has constraints that
can handle any RTL expression that could be present for that operand. (When multiple
alternatives are in use, each pattern must, for each possible combination of operand expres-
sions, have at least one alternative which can handle that combination of operands.) The
constraints don’t need to allow any possible operand—when this is the case, they do not
constrain—but they must at least point the way to reloading any possible operand so that
it will fit.

o If the constraint accepts whatever operands the predicate permits, there is no problem:
reloading is never necessary for this operand.

For example, an operand whose constraints permit everything except registers is safe
provided its predicate rejects registers.

An operand whose predicate accepts only constant values is safe provided its constraints
include the letter ‘i’. If any possible constant value is accepted, then nothing less than
‘i’ will do; if the predicate is more selective, then the constraints may also be more
selective.

e Any operand expression can be reloaded by copying it into a register. So if an operand’s
constraints allow some kind of register, it is certain to be safe. It need not permit all
classes of registers; the compiler knows how to copy a register into another register of
the proper class in order to make an instruction valid.

e A nonoffsettable memory reference can be reloaded by copying the address into a
register. So if the constraint uses the letter ‘o’, all memory references are taken care
of.

e A constant operand can be reloaded by allocating space in memory to hold it as preini-
tialized data. Then the memory reference can be used in place of the constant. So if
the constraint uses the letters ‘o’ or ‘m’, constant operands are not a problem.

e If the constraint permits a constant and a pseudo register used in an insn was not
allocated to a hard register and is equivalent to a constant, the register will be replaced
with the constant. If the predicate does not permit a constant and the insn is re-
recognized for some reason, the compiler will crash. Thus the predicate must always
recognize any objects allowed by the constraint.

If the operand’s predicate can recognize registers, but the constraint does not permit
them, it can make the compiler crash. When this operand happens to be a register, the
reload pass will be stymied, because it does not know how to copy a register temporarily
into memory.



Chapter 17: Machine Descriptions 355

If the predicate accepts a unary operator, the constraint applies to the operand. For
example, the MIPS processor at ISA level 3 supports an instruction which adds two registers
in SImode to produce a DImode result, but only if the registers are correctly sign extended.
This predicate for the input operands accepts a sign_extend of an SImode register. Write
the constraint to indicate the type of register that is required for the operand of the sign_
extend.

17.8.2 Multiple Alternative Constraints

Sometimes a single instruction has multiple alternative sets of possible operands. For ex-
ample, on the 68000, a logical-or instruction can combine register or an immediate value
into memory, or it can combine any kind of operand into a register; but it cannot combine
one memory location into another.

These constraints are represented as multiple alternatives. An alternative can be de-
scribed by a series of letters for each operand. The overall constraint for an operand is
made from the letters for this operand from the first alternative, a comma, the letters for
this operand from the second alternative, a comma, and so on until the last alternative. All
operands for a single instruction must have the same number of alternatives. Here is how
it is done for fullword logical-or on the 68000:

(define_insn "iorsi3"
[(set (match_operand:SI O "general_operand" "=m,d")
(ior:SI (match_operand:SI 1 "general_operand" "%0,0")
(match_operand:SI 2 "general_operand" "dKs,dmKs")))]
)

The first alternative has ‘m’ (memory) for operand 0, ‘0’ for operand 1 (meaning it must
match operand 0), and ‘dKs’ for operand 2. The second alternative has ‘d’ (data register)
for operand 0, ‘0’ for operand 1, and ‘dmKs’ for operand 2. The ‘=" and ‘)’ in the constraints
apply to all the alternatives; their meaning is explained in the next section (see Section 17.8.3
[Class Preferences|, page 356).

If all the operands fit any one alternative, the instruction is valid. Otherwise, for each
alternative, the compiler counts how many instructions must be added to copy the operands
so that that alternative applies. The alternative requiring the least copying is chosen. If
two alternatives need the same amount of copying, the one that comes first is chosen. These
choices can be altered with the ‘?” and ‘!’ characters:

? Disparage slightly the alternative that the ‘?’ appears in, as a choice when no
alternative applies exactly. The compiler regards this alternative as one unit
more costly for each ‘?’ that appears in it.

! Disparage severely the alternative that the ‘!’ appears in. This alternative can
still be used if it fits without reloading, but if reloading is needed, some other
alternative will be used.

This constraint is analogous to ‘?’ but it disparages slightly the alternative only

if the operand with the ‘~’ needs a reload.
$ This constraint is analogous to ‘!’ but it disparages severely the alternative

only if the operand with the ‘¢’ needs a reload.

When an insn pattern has multiple alternatives in its constraints, often the appearance
of the assembler code is determined mostly by which alternative was matched. When this



356 GNU Compiler Collection (GCC) Internals

is so, the C code for writing the assembler code can use the variable which_alternative,
which is the ordinal number of the alternative that was actually satisfied (0 for the first, 1
for the second alternative, etc.). See Section 17.6 [Output Statement|, page 344.

17.8.3 Register Class Preferences

The operand constraints have another function: they enable the compiler to decide which
kind of hardware register a pseudo register is best allocated to. The compiler examines the
constraints that apply to the insns that use the pseudo register, looking for the machine-
dependent letters such as ‘d’ and ‘a’ that specify classes of registers. The pseudo register
is put in whichever class gets the most “votes”. The constraint letters ‘g’ and ‘r’ also vote:
they vote in favor of a general register. The machine description says which registers are
considered general.

Of course, on some machines all registers are equivalent, and no register classes are
defined. Then none of this complexity is relevant.

17.8.4 Constraint Modifier Characters
Here are constraint modifier characters.

=’ Means that this operand is written to by this instruction: the previous value is

discarded and replaced by new data.

+ Means that this operand is both read and written by the instruction.

When the compiler fixes up the operands to satisfy the constraints, it needs to
know which operands are read by the instruction and which are written by it.
‘=" identifies an operand which is only written; ‘+” identifies an operand that is
both read and written; all other operands are assumed to only be read.

If you specify ‘=" or ‘+’ in a constraint, you put it in the first character of the
constraint string.

‘& Means (in a particular alternative) that this operand is an earlyclobber operand,
which is written before the instruction is finished using the input operands.
Therefore, this operand may not lie in a register that is read by the instruction
or as part of any memory address.

‘&’ applies only to the alternative in which it is written. In constraints with
multiple alternatives, sometimes one alternative requires ‘&’ while others do
not. See, for example, the ‘movdf’ insn of the 68000.

A operand which is read by the instruction can be tied to an earlyclobber
operand if its only use as an input occurs before the early result is written.
Adding alternatives of this form often allows GCC to produce better code when
only some of the read operands can be affected by the earlyclobber. See, for
example, the ‘mulsi3’ insn of the ARM.

Furthermore, if the earlyclobber operand is also a read/write operand, then
that operand is written only after it’s used.

‘%’ does not obviate the need to write ‘=’ or ‘+’. As earlyclobber operands
are always written, a read-only earlyclobber operand is ill-formed and will be
rejected by the compiler.



Chapter 17: Machine Descriptions 357

4%7

Declares the instruction to be commutative for this operand and the following
operand. This means that the compiler may interchange the two operands if
that is the cheapest way to make all operands fit the constraints. ‘%’ applies to
all alternatives and must appear as the first character in the constraint. Only
read-only operands can use ‘%’.

This is often used in patterns for addition instructions that really have only
two operands: the result must go in one of the arguments. Here for example,
is how the 68000 halfword-add instruction is defined:

(define_insn "addhi3"
[(set (match_operand:HI O "general_operand" "=m,r")
(plus:HI (match_operand:HI 1 "general_operand" "%0,0")
(match_operand:HI 2 "general_operand" "di,g")))]

L)
GCC can only handle one commutative pair in an asm; if you use more, the
compiler may fail. Note that you need not use the modifier if the two alterna-
tives are strictly identical; this would only waste time in the reload pass. The
modifier is not operational after register allocation, so the result of define_
peephole2 and define_splits performed after reload cannot rely on ‘%’ to
make the intended insn match.

Says that all following characters, up to the next comma, are to be ignored as
a constraint. They are significant only for choosing register preferences.

Says that the following character should be ignored when choosing register
preferences. ‘*’ has no effect on the meaning of the constraint as a constraint,
and no effect on reloading. For LRA ‘*’ additionally disparages slightly the
alternative if the following character matches the operand.

Here is an example: the 68000 has an instruction to sign-extend a halfword
in a data register, and can also sign-extend a value by copying it into an ad-
dress register. While either kind of register is acceptable, the constraints on
an address-register destination are less strict, so it is best if register allocation
makes an address register its goal. Therefore, ‘*’ is used so that the ‘d’ con-
straint letter (for data register) is ignored when computing register preferences.

(define_insn "extendhisi2"
[(set (match_operand:SI O "general_operand" "=*d,a")
(sign_extend:SI
(match_operand:HI 1 "general_operand" "0,g")))]
L)

17.8.5 Constraints for Particular Machines

Whenever possible, you should use the general-purpose constraint letters in asm arguments,
since they will convey meaning more readily to people reading your code. Failing that, use
the constraint letters that usually have very similar meanings across architectures. The
most commonly used constraints are ‘m’ and ‘r’ (for memory and general-purpose registers
respectively; see Section 17.8.1 [Simple Constraints|, page 350), and ‘I’, usually the letter
indicating the most common immediate-constant format.

Each architecture defines additional constraints. These constraints are used by the com-

piler itself for instruction generation, as well as for asm statements; therefore, some of the



358

GNU Compiler Collection (GCC) Internals

constraints are not particularly useful for asm. Here is a summary of some of the machine-
dependent constraints available on some particular machines; it includes both constraints
that are useful for asm and constraints that aren’t. The compiler source file mentioned in
the table heading for each architecture is the definitive reference for the meanings of that
architecture’s constraints.

AArch64 family—‘config/aarch64/constraints.md’

k

w

Upl
Upa

Ush

Q
Ump

The stack pointer register (SP)

Floating point register, Advanced SIMD vector register or SVE
vector register

Like w, but restricted to registers 0 to 15 inclusive.
Like w, but restricted to registers 0 to 7 inclusive.

One of the low eight SVE predicate registers (PO to P7)
Any of the SVE predicate registers (PO to P15)

Integer constant that is valid as an immediate operand in an ADD
instruction

Integer constant that is valid as an immediate operand in a SUB
instruction (once negated)

Integer constant that can be used with a 32-bit logical instruction
Integer constant that can be used with a 64-bit logical instruction

Integer constant that is valid as an immediate operand in a 32-
bit MOV pseudo instruction. The MOV may be assembled to one of
several different machine instructions depending on the value

Integer constant that is valid as an immediate operand in a 64-bit
MOV pseudo instruction

An absolute symbolic address or a label reference
Floating point constant zero
Integer constant zero

The high part (bits 12 and upwards) of the pc-relative address of a
symbol within 4GB of the instruction

A memory address which uses a single base register with no offset

A memory address suitable for a load/store pair instruction in SI,
DI, SF and DF modes

AMD GCN —‘config/gcn/constraints.md’

I
J
Kf
L

Immediate integer in the range —16 to 64
Immediate 16-bit signed integer
Immediate constant —1

Immediate 15-bit unsigned integer



Chapter 17: Machine Descriptions 359

DA
DB

Sg
SD

SS

Sm

Sv

ca
Ccs

cV

RB

RF

RS
RL

RG

RD

Immediate constant that can be inlined in an instruction encod-
ing: integer —16..64, or float 0.0, +/—0.5, +/—1.0, +/—2.0, +/—4.0,
1.0/(2.0*PI)

Immediate 32-bit signed integer that can be attached to an instruc-
tion encoding

Immediate 32-bit integer in range —16..4294967295 (i.e. 32-bit un-
signed integer or ‘A’ constraint)

Immediate 64-bit constant that can be split into two ‘A’ constants
Immediate 64-bit constant that can be split into two ‘B’ constants
Any unspec

Any symbol_ref or label_ref

VGPR register

SGPR register

SGPR registers valid for instruction destinations, including VCC,
MO and EXEC

SGPR registers valid for instruction sources, including VCC, MO,
EXEC and SCC

SGPR registers valid as a source for scalar memory instructions
(excludes M0 and EXEC)

SGPR registers valid as a source or destination for vector instruc-
tions (excludes EXEC)

All condition registers: SCC, VCCZ, EXECZ
Scalar condition register: SCC

Vector condition register: VCC, VCC_LO, VCC_HI
EXEC register (EXEC_LO and EXEC_HI)

Memory operand with address space suitable for buffer_* instruc-
tions

Memory operand with address space suitable for flat_x* instruc-
tions

Memory operand with address space suitable for s_x instructions

Memory operand with address space suitable for ds_* LDS instruc-
tions

Memory operand with address space suitable for ds_* GDS instruc-
tions

Memory operand with address space suitable for any ds_x* instruc-
tions



360

RM

GNU Compiler Collection (GCC) Internals

Memory operand with address space suitable for global_x* instruc-
tions

ARC —‘config/arc/constraints.md’

q

Cal

CnL
CmL

= v o =

Registers usable in ARCompact 16-bit instructions: r0-r3, ri2-
r15. This constraint can only match when the ‘-mq’ option is in
effect.

Registers usable as base-regs of memory addresses in ARCompact
16-bit memory instructions: rO-r3, r12-r15, sp. This constraint
can only match when the ‘-mq’ option is in effect.

ARC FPX (dpfp) 64-bit registers. DO, D1.
A signed 12-bit integer constant.

constant for arithmetic/logical operations. This might be any con-
stant that can be put into a long immediate by the assmbler or
linker without involving a PIC relocation.

A 3-bit unsigned integer constant.
A 6-bit unsigned integer constant.
One’s complement of a 6-bit unsigned integer constant.
Two’s complement of a 6-bit unsigned integer constant.
A 5-bit unsigned integer constant.
A 7-bit unsigned integer constant.
A 8-bit unsigned integer constant.

Any const_double value.

ARM family—‘config/arm/constraints.md’

h
k
1

<

Ho Q@

In Thumb state, the core registers r8-r15.
The stack pointer register.

In Thumb State the core registers rO-r7. In ARM state this is an
alias for the r constraint.

VFP floating-point registers s0-s31. Used for 32 bit values.

VFP floating-point registers d0-d31 and the appropriate subset dO-
d15 based on command line options. Used for 64 bit values only.
Not valid for Thumbl.

The iWMMX co-processor registers.
The iWMMX GR registers.
The floating-point constant 0.0

Integer that is valid as an immediate operand in a data processing
instruction. That is, an integer in the range 0 to 255 rotated by a
multiple of 2



Chapter 17: Machine Descriptions 361

Uv

Uy
Ug

Integer in the range —4095 to 4095

Integer that satisfies constraint ‘I’ when inverted (ones comple-
ment)

Integer that satisfies constraint ‘I’ when negated (twos comple-
ment)

Integer in the range 0 to 32

A memory reference where the exact address is in a single register
(“m” is preferable for asm statements)

An item in the constant pool
A symbol in the text segment of the current file

A memory reference suitable for VFP load/store insns
(reg+constant offset)

A memory reference suitable for IWMMXt load /store instructions.

A memory reference suitable for the ARMv4 ldrsb instruction.

AVR family— ‘config/avr/constraints.md’

1
a

d

s} ¢ Q o o

N

—

o = = & XN 4

Registers from r0 to r15
Registers from r16 to r23
Registers from r16 to r31

Registers from r24 to r31. These registers can be used in ‘adiw’
command

Pointer register (r26-r31)

Base pointer register (r28-r31)

Stack pointer register (SPH:SPL)
Temporary register r0

Register pair X (r27:126)

Register pair Y (r29:r28)

Register pair Z (r31:r30)

Constant greater than —1, less than 64
Constant greater than —64, less than 1
Constant integer 2

Constant integer 0

Constant that fits in 8 bits

Constant integer —1

Constant integer 8, 16, or 24



362

P
G

Q

GNU Compiler Collection (GCC) Internals

Constant integer 1
A floating point constant 0.0

A memory address based on Y or Z pointer with displacement.

Blackfin family— ‘config/bfin/constraints.md’

a
d

z

qn

=

< o W = o

Hh

W o Q

Ksh
Kuh
Ks7
Ku7
Kub
Ks4
Ks3

P register
D register
A call clobbered P register.

A single register. If n is in the range 0 to 7, the corresponding D
register. If it is A, then the register PO.

Even-numbered D register
Odd-numbered D register
Accumulator register.
Even-numbered accumulator register.
Odd-numbered accumulator register.
I register

B register

M register

Registers used for circular buffering, i.e. I, B, or L registers.
The CC register.

LTO or LT1.

LCO or LCI.

LBO or LB1.

Any D, P, B, M, I or L register.

Additional registers typically used only in prologues and epilogues:
RETS, RETN, RETI, RETX, RETE, ASTAT, SEQSTAT and USP.

Any register except accumulators or CC.

Signed 16 bit integer (in the range —32768 to 32767)
Unsigned 16 bit integer (in the range 0 to 65535)
Signed 7 bit integer (in the range —64 to 63)
Unsigned 7 bit integer (in the range 0 to 127)
Unsigned 5 bit integer (in the range 0 to 31)

Signed 4 bit integer (in the range —8 to 7)

Signed 3 bit integer (in the range —3 to 4)



Chapter 17: Machine Descriptions 363

Ku3
Pn
PA

PB

M1
M2
J
L
H

Q

Unsigned 3 bit integer (in the range 0 to 7)
Constant n, where n is a single-digit constant in the range 0 to 4.

An integer equal to one of the MACFLAG_XXX constants that is
suitable for use with either accumulator.

An integer equal to one of the MACFLAG_XXX constants that is
suitable for use only with accumulator Al.

Constant 255.
Constant 65535.
An integer constant with exactly a single bit set.

An integer constant with all bits set except exactly one.

Any SYMBOL_REF.

CR16 Architecture—‘config/cr16/cr16.h’

b

= =2 &0 "N 4o H " o

G

Registers from r0 to r14 (registers without stack pointer)
Register from r0 to r11 (all 16-bit registers)

Register from r12 to r15 (all 32-bit registers)

Signed constant that fits in 4 bits

Signed constant that fits in 5 bits

Signed constant that fits in 6 bits

Unsigned constant that fits in 4 bits

Signed constant that fits in 32 bits

Check for 64 bits wide constants for add/sub instructions

Floating point constant that is legal for store immediate

C-SKY—‘config/csky/constraints.md’

The mini registers r0 - r7.
The low registers r0 - r15.
C register.

HI and LO registers.

LO register.

HI register.

Vector registers.

Stack pointer register (SP).

The C-SKY back end supports a large set of additional constraints that are only
useful for instruction selection or splitting rather than inline asm, such as con-
straints representing constant integer ranges accepted by particular instruction
encodings. Refer to the source code for details.



364

GNU Compiler Collection (GCC) Internals

Epiphany— ‘config/epiphany/constraints.md’

U1ée
K
L
Cml

C1l1

Cril

Cal

Csy

Rcs

Rsc

Rct

Rgs

Car

Rra

Rcc
Sra

Cfm

An unsigned 16-bit constant.
An unsigned 5-bit constant.
A signed 11-bit constant.

A signed 11-bit constant added to —1. Can only match when the
‘-mireg-reg’ option is active.

Left-shift of —1, i.e., a bit mask with a block of leading ones, the
rest being a block of trailing zeroes. Can only match when the
‘-mireg-reg’ option is active.

Right-shift of —1, i.e., a bit mask with a trailing block of ones, the
rest being zeroes. Or to put it another way, one less than a power
of two. Can only match when the ‘-mireg-reg’ option is active.

Constant for a